
Learning Interpretable Relational Structures of
Hinge-loss Markov Random Fields

Yue Zhang and Arti Ramesh
SUNY Binghamton

{yzhan202, artir}@binghamton.edu

Abstract

Statistical relational models such as Markov logic
networks (MLNs) and hinge-loss Markov random
fields (HL-MRFs) are specified using templated
weighted first-order logic clauses, leading to the
creation of complex, yet easy-to-encode models
that effectively combine uncertainty and logic.
Learning the structure of these models from data
reduces the human effort of identifying the right
structures. In this work, we present an asyn-
chronous deep reinforcement learning algorithm
to automatically learn HL-MRF clause structures.
Our algorithm possesses the ability to learn seman-
tically meaningful structures that appeal to human
intuition and understanding, while simultaneously
being able to learn structures from data, thus learn-
ing structures that have both the desirable quali-
ties of interpretability and good prediction perfor-
mance. The asynchronous nature of our algorithm
further provides the ability to learn diverse struc-
tures via exploration, while remaining scalable. We
demonstrate the ability of the models to learn se-
mantically meaningful structures that also achieve
better prediction performance when compared with
a greedy search algorithm, a path-based algorithm
with L1 regularization, and manually defined rules
on two computational social science applications:
i) modeling recovery in alcohol use disorder, and
ii) detecting bullying.

1 Introduction
Machine-learning models that possess superior interpretabil-
ity and ease of specification without compromising model-
ing power have the potential to positively impact numer-
ous downstream application domains that use them. In this
work, we focus on one such recently developed inherently in-
terpretable model that efficiently combines logic and uncer-
tainty, hinge-loss Markov random fields (HL-MRFs) [Bach
et al., 2017]. HL-MRFs are specified using probabilistic oft
logic (PSL), which uses logical first-order clauses to capture
domain knowledge. The weights of these clauses are learned
in a supervised manner by grounding them in data instances

with ground truth values. The capability of the model to rep-
resent and reason about complex relational dependencies in
the data using continuous-valued variables, while simultane-
ously being easy to encode these dependencies using logical
clauses/rules makes it a good choice in modeling numerous
applications, especially in computational social science.

In this work, we present an approach to learn meaning-
ful structures of HL-MRFs by adapting a deep reinforcement
learning (RL) algorithm, asynchronous advantage actor-critic
(A3C) [Mnih et al., 2016]. The possibility of tackling huge
state spaces asynchronously in A3C together with scalable
inference in HL-MRFs paves the way for developing a scal-
able structure learning algorithm that allows for diverse ex-
ploration. Further, guiding this exploration using domain-
specific semantic constraints is helpful in learning meaning-
ful structures that can potentially also achieve good prediction
performance.

Specifically, we make the following main contributions:
1. We present asynchronous advantage actor-critic for struc-
ture learning (A3SL), a deep RL algorithm for learning in-
terpretable structures of HL-MRFs that takes into account
semantic constraints on domain-specific insights to guide
the discovery of structures while simultaneously maintaining
good prediction performance and ability to learn from real-
world data instances.
2. We encourage the learning of diverse models through ex-
ploration by including a diversity constraint on the actions.
This can potentially help the domain expert choose the model
with the best semantic meaning from a group of models that
have similar prediction performance.
3. We evaluate our structure learning algorithm on two impor-
tant real-world computational social science applications: i)
modeling recovery from alcohol use disorder, and ii) detect-
ing bullying in online interactions. We choose these applica-
tions as there is existing work on applying HL-MRFs in these
domains and we are able to make a direct comparison of the
learned rules from A3SL with the existing manually speci-
fied models. We show that the structures learned by our algo-
rithm achieves better prediction performance when compared
with structures learned using a greedy structure learning al-
gorithm, structure learning algorithms developed for Markov
logic networks (MLNs) (Hypergraph lifting [Kok and Domin-
gos, 2009] and Grafting-light [Zhu et al., 2010]), and manu-
ally defined model structures.



4. We demonstrate that our model is able to learn complex
clauses that encode network interactions such as the friend
network and meaningful latent variables through a complex
combination of features and target variables using semantic
constraints. We also demonstrate that our learned clauses re-
semble the manually specified clauses capturing the same se-
mantic meaning, while also learning others via exploration.
Ours is the first structure learning algorithm that directly op-
timizes for interpretability, learning networked dependency
structures, and learning meaningful latent variables in the
problem formulation itself, thus yielding structures with en-
hanced interpretability and semantic coherence.

2 Related Work
Perhaps the earliest work in structure learning for undirected
models is by McCallum et al. for Markov Random Fields,
in which a greedy search is used for either adding or remov-
ing candidate features [McCallum, 2003]. Structure learn-
ing in MRFs has also been cast as a feature selection prob-
lem and solved using L1 regularization over features [Zhu
et al., 2010; Khosravi et al., 2010]. Structure learning has
also been studied in SRL models such as Markov Logic
Networks (MLNs), where the first approach is to employ a
greedy search technique for this problem [Kok and Domin-
gos, 2005]. Bottom-up approaches that generate clauses by
using paths to capture structural motifs in the data have also
been proposed, where finally the paths are ranked according
to a path ranking algorithm [Mihalkova and Mooney, 2007;
Kok and Domingos, 2010; 2009]. Most recent algorithms
for structure learning in MLNs use functional gradient boost-
ing and online learning to create scalable variants of exist-
ing structure learning algorithms [Khot et al., 2011; 2015;
Huynh and Mooney, 2011]. Learning the structure of MLNs
specific to tasks of interest have also been developed us-
ing inductive logic programming [Biba et al., 2008], L1-
regularized learning [Huynh and Mooney, 2008], and itera-
tive local search [Biba et al., 2008]. Embar et al. [Embar
et al., 2018] recently develop a greedy path-based structure
learning algorithm for PSL.

The primary differences between our approach and exist-
ing work are: i) we guide the model into learning structures
that bring out the modeling capabilities of SRL models—
modeling relational dependencies and latent variables in the
data/domain, and ii) we approach the structure learning prob-
lem from the perspective of the domains in which they would
be most helpful, allowing us to demonstrate the encoding
of domain-specific semantic constraints to learn models that
are both meaningful and have good prediction performance,
while existing approaches are primarily data-driven.

3 Deep Reinforcement Learning for Structure
Learning in HL-MRFs

3.1 Hinge-loss Markov Random Fields
HL-MRFs are a recently developed scalable class of contin-
uous, conditional graphical models [Bach et al., 2017]. HL-
MRFs can be specified using probabilistic soft logic (PSL)
[Bach et al., 2017], a first-order logic templating language.
In PSL, random variables are represented as logical atoms
and weighted clauses define dependencies between them of

the form: λ : P (a) ∧Q(a, b)→ R(b), where P, Q, and R are
predicates, a and b are variables, and λ is the weight associ-
ated with the clause. The weight of the clause c indicates its
importance in the HL-MRF model, which is defined as

P (Y|X) ∝ exp
(
−

M∑
c=1

λcφc(Y,X)
)

φc(Y,X) = (max{lc(Y,X), 0})ρc (1)

where P (Y|X) is the probability density function of a subset
of logical atoms Y given observed logical atoms X, φc(Y,X)
is a hinge-loss potential corresponding to an instantiation of a
clause c, and is specified by a linear function lc and optional
exponent ρc ∈ {1, 2}. Since HL-MRFs operate on continu-
ous random variables and encode dependencies using poten-
tial functions that are convex, MAP inference in these models
is always a convex optimization problem. The combinatorial
explosion of state space during inference in SRL models in-
cluding MLNs [Richardson and Domingos, 2006] makes it
computationally challenging for designing a structure learn-
ing algorithm that requires repeated inference. In contrast,
the possibility of fast exact inference in HL-MRFs opens up
opportunities to capitalize recent advancements in deep RL to
learn HL-MRF structures.

The logical conjunction of Boolean variables X ∧ Y can
be generalized to continuous variables using the hinge func-
tionmax{X+Y −1, 0}, which is known as the Lukasiewicz
t-norm. Disjunction X ∨ Y is relaxed to min{X + Y, 1},
and negation ¬X to 1 − X . For example, A ⇒ B =
¬A ∨ B has a distance to satisfaction which is a hinge func-
tion, max{A − B, 0}. Thus, A ⇒ B penalizes the proba-
bility of a state based on the extent to which A > B. Our
approach to structure learning focuses on the learning logical
constructs that particularly bring out the modeling capabili-
ties in HL-MRFs such as:
1. Relational dependencies and network structures:
friends(U,U1) ∧ usesAlcoholWord(U1, P )→ ¬recovers(U),
which captures if user U ’s friend U1 uses alcohol words fre-
quently in their posts, that could potentially negatively influ-
ence U ’s recovery.
2. Latent variables: Incorporating meaningful latent variables
can be helpful in learning abstractions that enhance modeling
capability and interpretability.

3.2 Problem Definition
The structure learning problem can be modeled as a space
search and sequential decision problem using reinforcement
learning. Since HL-MRFs are specified using templated first-
order logic clauses (also referred to as rules) in continuous
space using the probabilistic programming language PSL, our
problem translates to learning the structure of these clauses.
We know that a first order logic clause has the form body→
head, and in PSL head only can contain one predicate and
body has the form b1∧b2∧ ...∧bN , N < L, where L denotes
the maximum length of a clause. And, the order of predicates
b in a clause within the body and clause in the list of clauses
do not matter. A clause of the structure b1 ∧ b2 ∧ ... ∧ bN →
head can be represented in different ways as shown below.

b1 ∧ b2 ∧ ... ∧ bN → head = head ∨ ¬(b1 ∧ b2 ∧ ... ∧ bN )

= ¬b0 ∨ ¬b1 ∨ ¬b2 ∨ .. ∨ ¬bN



Each clause has a formula ¬b0 ∨ ¬b1 ∨ ... ∨ ¬bN , where we
replace head as b0 for readability. This can be represented
as a sequence b0, b1, ..., bN ,END, where END signifies the
end of the sequence. If current length of sequence equals
to L, we stop appending the current sequence. We can see
that when we generate a sequence we do not need to specify
which predicate is head in a clause beforehand, since inher-
ently the model is undirected. After clause generation, we
can randomly choose any predicate ¬bi as head, so finally the
clause becomes b0 ∧ ... ∧ bi−1 ∧ bi+1 ∧ ... ∧ bN → ¬bi. In
practice, we can always choose the target predicate as head
for ease of interpretability. Here, any predicate bi can refer
to the original predicate or its negative counterpart. Not all
the predicates have meaningful negative counterparts, for ex-
ample for network predicates, which capture relationship be-
tween two users, such as replies(U1, U2, I): user U1 replies
to U2’s message I , the negative counterpart ¬ replies(U1, U2,
I) is not very meaningful as we are primarily interested in
modeling interactions and not lack thereof.

3.3 A3SL: Asynchronous Advantage Actor-critic
Structure Learning algorithm for PSL

We present our asynchronous advantage actor-critic structure
learning algorithm, A3SL, which adapts a recently devel-
oped neural policy gradient algorithm asynchronous advan-
tage actor-critic (A3C) [Mnih et al., 2016] for the structure
learning problem. A3C is one of the most general and suc-
cessful learning agents to date and has been shown to perform
well in discrete and continuous action spaces. A3C’s abil-
ity to asynchronously execute multiple agents in parallel on
multiple instances in the environment offers both algorithmic
improvements that allow for effective integration of feedfor-
ward and recurrent deep neural network architectures in RL
algorithms as well as practical benefits in speed, making it an
appropriate choice for our structure learning problem. The
description of A3SL is given in Algorithm 1 and the details
are given in Algorithm 2.

Environment - Actions, Rewards, and Constraints
Here, we define the problem space and reinforcement learn-
ing algorithm setup.
Environment ε: Our environment consists of predicates for
features (denoted by X), target variables (Y ), and latent vari-
ables (Z) and data corresponding to X and ground truth data
for Y , except latent variables.
State st: Each intermediate state st at time t comprises of
either a partially constructed or a complete set of first-order
logic clauses, denoted by C. The asynchronous nature of
A3SL helps in combating the combinatorial explosion in the
state space, making it an appropriate fit for the problem.
Action at: During an action at at time t the algorithm adds
a new predicate to the current clause or chooses to return the
clause by adding an END to the clause. The algorithm can
choose from the action space of all the defined predicates X,
Y, Z, and their negative counterparts.
Transition: The environment evolves by updating the current
clause c with the predicate chosen during at.
Reward rt and Cumulative Reward Rt: rt is the reward at
a given time step t. Rt =

∑∞
k=0 γ

krt+k is the total accumu-
lated reward from time step t with discount factor γ ∈ (0, 1].
In our setting, Rt is equal to the value of the objective func-

tion J (see below). As in a standard reinforcement learning
setting, V π(s) = E[Rt|st = s] is the expected return for fol-
lowing policy π from state s. The goal of the agent is to max-
imize the expected return from each state st. During training,
the agent learns to maximize the cumulative reward, so the
model can find the corresponding optimal model structure.
Objective: We define the objective function J = L(Y,X) +
Interpretability Constraint, where L(Y,X) is the HL-MRF
probability density, L(Y,X) = logP (Y |X), given by Eqn
1. Given a set of target predicates Y , a PSL model m con-
sists of model structure C and corresponding weight vec-
tor Λ, comprising of individual clauses c and weights λc ∈
R+. Interpretability Constraint consists of the constraints on
the total number of clauses, the maximum possible length
of a clause, and the domain-specific semantic constraints.
These qualities have been shown to enhance interpretability
in Bayesian clause sets [Wang et al., 2015; Angelino et al.,
2018; Wang et al., 2017a; Letham et al., 2015]. The combina-
tion of semantic constraints and a performance-based utility
allows our algorithm to learn structures that are interpretable
and data-driven, thus optimizing for both while being able to
rectify any domain-specific intuitions that are not true in the
data. Hence, the objective function J is defined as,

J =
(
L(Y,X)− αlen ∗

1

|C|
∑
c∈C

length(c)−

αnum ∗ |C| − αsem ∗
∑
c∈C

(Dist(c) ∗ λc)
)

(2)

where αlen, αnum, and αsem parameters denote the strength of
the different constraints and Dist(c) denotes the deviation of
clause c from semantic constraints discussed below. A3SL
returns the value of C, Λ that maximizes the objective func-
tion.

Algorithm 1 A3SL: Asynchronous advantage actor-critic
structure learning algorithm for each actor-learner thread
Input: A collection of predicates, X = {xj , j = 1, ...,m}, Y =
{yj , j = 1, ..., n}, Z = {zj , j = 1, ..., k}, Ground truth labels Yg
for Y
Let C = {c0, c1, .., cM} denote set of first-order logic clauses
Let Clist denote list of C obtained with reward > 0.
Output: Optimal C denoted by C∗

Global Variables: Input and output variables, parameter vectors θ
and θv , counter T , convergence criteria Tmax, thread convergence
criteria tmax.
1: function C∗ = A3SL()
2: Initialize T = 0, thread step counter t = 0

RuleEnd = false, ListEnd = false, i = 0, C = ∅, tstart = t
3: repeat
4: if ListEnd then
5: Initialize ListEnd = false, i = 0, C = ∅
6: Synchronize thread-specific local copies of parameters

θ′ = θ, θ′v = θv
7: Obtain state st = Ψ(C), where Ψ is the first-order logic

embedding function
8: repeat
9: PSL-Actor(θ′)

10: until ListEnd or t− tstart == tmax
11: PSL-Critic(θ′, θ′v)
12: until T > Tmax
13: C∗ = optimal C from Clist
14: return C∗



Algorithm 2 A3SL algorithm details for updating action and
reward
1: function PSL-Actor(θ′)
2: Perform action at ∈ {X,¬X,Y,¬Y,Z,¬Z,END}, accord-

ing to policy π(at|st; θ′)
3: // Finding end of clause
4: if at == END then
5: RuleEnd = true
6: else
7: Append at to ci
8: if |ci|==N then
9: RuleEnd = true

10: // Checking validity of clause
11: if RuleEnd then
12: i++, RuleEnd = false
13: if ci is invalid or i==M then
14: ListEnd = true
15: // Calculating weights and reward
16: if ListEnd then
17: Initialize weights Λ for C
18: Perform weight learning and update Λ
19: Obtain reward rt = Utility(C, Λ)
20: Add C to Clist
21: else
22: Obtain reward rt = 0
23: New state st+1 = Ψ(C)
24: t = t+ 1
25: T = T + 1

1: function PSL-Critic(θ′, θ′v)
2: Reset gradients dθ = 0 and dθv = 0

3: R = { 0 for terminal st
V (st, θ

′
v) for non-terminal st

4: for k ∈ {t− 1, ..., tstart} do
5: R = rk + γR
6: Accumulate gradients wrt θ′:

dθ = dθ + ∇θ′(log π(ai|sk; θ′)(R − V (sk; θ′v)) + β ∗
H(π(st)))

7: Accumulate gradients wrt θ′v:
dθv = dθv + ∂(R− V (sk; θ′v))2/∂θ′v

8: Perform asynchronous update of θ using dθ and θv using dθv

Constraints on Actions
We incorporate constraints on actions to guide the algorithm
to discover clause structures that are grammar compliant, se-
mantically coherent, and diverse.
Grammar Compliance After clause construction, it is
checked for compliance with PSL grammar. If not compliant,
the list of clauses excluding the current clause is returned.
The following constraints encode necessary grammar com-
pliance with PSL.
1. If the algorithm chooses a redundant predicate in the same
clause, the action is ignored.
2. After clause construction, if there is no target or latent
predicate in the learned clause, then it is discarded.

Domain-specific Semantic Constraints We illustrate the
capability of our model to encode domain-specific semantic
constraints using one of the computational social science ap-
plication domains, modeling recovery from alcohol use disor-
der (AUD). By intuition, presence of alcohol-related signals
indicates relapse (denoted by ¬recovery and sobriety-related

signals indicates recovery (denoted by recovery). These right
reasons can be captured using simple logical clauses such as
the ones given below, which can guide the discovery of model
structures that capture these reasons [Ross et al., 2017]. We
use a distance function, Dist(c) to capture if the learned clause
structure complies with or deviates from the right reasons
identified by the expert: Dist(c) = 0, if the clause complies
with the right reasons and Dist(c) = 1, otherwise.

1) alcohol signal⇒ ¬recovers; 2) sober signal⇒ recovers
3) alcohol signal ∧ ¬recovers⇒ ¬sober signal
4) sober signal ∧ recovers⇒ ¬alcohol signal

For example, consider the clause:
usesAlcoholWord(U,AW) ⇒ ¬recovers(U), the distance
to the right reason is 0, because it satisfies right rea-
son 1 above. For the rule: usesAcoholWord(U,AW) ∧
containsSoberWord(U,I,SW) ⇒ ¬recovers(U), the distance
to the right reason is 0, because it satisfies the right reason 4.
But for rule: containsSoberWord(U,I,SW) ⇒ ¬recovers(U),
the distance to the right reason is 1. From the perspective of
the objective function, we want the weights of the clauses
that do not conform to the right reasons to have much smaller
values, or even 0, which means the clause list excludes the
clause corresponding to the wrong reason.
Diversity Encouragement across Models We may not al-
ways have access to this extra domain knowledge or the “right
reasons”. In this case, we can learn multiple diverse policies
[Wang et al., 2017b; Haarnoja et al., 2017; Hong et al., 2018;
Liu et al., 2017] so an appropriate policy can be selected from
them. To enable this, during training, we encourage diverse
exploration by adding an entropy prior in the policy gradient
objective function as follows,

arg max
π

E[log π(at|st; θ)(Rt − bt(st)) + β ∗H(π(st))]

H(π(st)) = −
∑
at

π(at|st) log(π(at|st))

where the baseline bt(st) is approximated by the value func-
tion V π(st) and H(.) is the entropy. The diverse exploration
across models results in diverse HL-MRF models after train-
ing which are all capable of good prediction performance.
Implementation Details During training, we relax the
clause length and the number of clauses constraints in the
objective by setting maximal clause length L and maximal
clause number M . We encode the set of clauses correspond-
ing to each state st in vector space using one-hot encod-
ing [Wang and Cohen, 2016]. We incorporate the semantic
constraints during weight learning in HL-MRFs by includ-
ing them in the maximum-likelihood weight update as shown
in Equation 3. The second term corresponds to the semantic
distance indicating deviation from the semantic constraints.

∂J

∂Λc
=
∂ logP (Y |X)

∂Λc
− αsem ∗ Dist(c)

= EΛ[Φc(Y,X)]− Φc(Y,X)− αsem ∗ Dist(c) (3)

With the above relaxations, we use area under the ROC curve
as the Utility function to calculate the reward. Hence, Rt =
AUC-ROC, and rt=0, when t is not terminal, and rt = AUC-
ROC, when t is terminal. In our experiments, the value and



the policy network both use a 3-layer feed-forward neural net-
work architecture with tanh as the activation function. We set
tmax = 6 and Tmax = 100, 000. We use distributed imple-
mentation using multi-threading that takes advantage of the
asynchronous and parallel nature of the algorithm.
4 Experiments
We conduct experiments to answer the following questions:
1. How well does our learned model structures perform in
real-world prediction problems? We evaluate the efficacy
of our learned structures in two computational social science
modeling scenarios: i) predicting recovery from/relapse into
alcohol use disorder (AUD) using a combination of behav-
ioral, social, and linguistic signals, and ii) detecting bully-
ing using linguistic signals. We choose these application
areas as there is existing work that models these domains
using HL-MRF models using manually defined rules that
can serve as a comparison both quantitatively and qualita-
tively with our learned model structures [Zhang et al., 2018;
Tomkins et al., 2018]. We compare the structure learned by
A3SL with greedy structure learning algorithm (Greedy-SL),
a combination of a path-based structure learning algorithm,
hypergraph lifting [Kok and Domingos, 2009], with a fea-
ture selection based structure learning algorithm [Zhu et al.,
2010] (Hypergraph Lifting with L1 regularization) and model
designed by a human expert (human-expert), and logistic re-
gression. Our Greedy-SL algorithm learns the clause struc-
ture from a list of predicates, whereas existing greedy struc-
ture learning for HL-MRFs [Embar et al., 2018] and inductive
logic programming [Zeng et al., 2014] require a pre-defined
set of clauses.
2. How well do our rules imbibe the desirable characteristics
present in models designed by human experts? We compare
the structure of the learned models using A3SL with model
structures defined by human experts, both quantitatively and
qualitatively, to demonstrate that our algorithm learns seman-
tically meaningful structures that also are capable of achiev-
ing good prediction performance, thus combining the ben-
efits of semantic coherence in human-defined clauses and
performance-oriented data-driven clause structures.

4.1 Case 1: Modeling Recovery in AUD
To model recovery from AUD, we use the dataset in Zhang et
al. [2018]. In this dataset, there are 302 users attending Alco-
holics Anonymous (AA) labeled with recovery and relapse.
For each of the AA-attending user, the dataset contains the
most recent 3, 200 tweets for each of these users, containing
a total of 274, 595 AA user tweets. For 302 AA users, there
are 76, 183 friends in dataset. For each friend, the dataset con-
tains 3, 200 tweets, containing a total of 14, 921, 997 tweets.
We follow Zhang et al. [2018] to extract the same features to
enable a direct comparison.

Table 1 shows the 5-fold cross-validation results on pre-
dicting recovery and relapse of AA-attending users. We ob-
serve that A3SL achieves a statistically significant prediction
performance with a rejection threshold of p = 0.01 when
compared with the manually specified model on the same
dataset [Zhang et al., 2018], Greedy-SL, and a logistic regres-
sion baseline. Examining the learned structures qualitatively,

we observe that A3SL learns a variety of different clauses,
capturing the semantic domain-specific constraints of asso-
ciating alcohol-related signals to relapse and sobriety-related
signals to recovery, and also learning data-driven variations
from explorations resulting in better prediction performance.

Tables 2 and 3 present a comparison of some representative
clauses learned by A3SL with manually constructed ones. U
refers to the AA-attending user that we want to predict recov-
ery/relapse, U1 refers to friend of AA-user U , I refers to user
post, I1 refers to friend post, and AW and SW refer to spe-
cific alcohol/sober word from a vocabulary of alcohol/sober
words. We group the learned rules into two categories: i)
local rules: rules that capture dependencies among features
on the users to predict their recovery/relapse, and ii) net-
work rules: rules that capture users’ relationships with their
friends to reason about the users’ recovery/relapse. We find
that A3SL learns semantically meaningful clauses containing
multiple features of the same signal (set B) and both alcohol
and sober signals (set C), thus appealing to domain experts as
well as capturing uncertainty better. Similarly, A3SL learns a
variety of network rules that combine linguistic features from
users (usesSoberWord(U, SW)) with linguistic features from
friends (friendContainsSoberWord(U1, I1, SW1)) and uses
the network structure (friends(U, U1), friendRetweets(U1, U,
I1)) to reason about recovery. A3SL’s ability to learn these
network dependencies makes it a powerful structure learning
algorithm that brings out the modeling power of relational
models.

4.2 Case 2: Detecting Bullying Messages
To learn a model for detecting bullying messages, we use the
Formspring dataset. The dataset has a total of 13, 159 mes-
sages. We follow existing work on the dataset that uses HL-
MRFs to model bullying and construct similar feature pred-
icates [Tomkins et al., 2018; Zhang and Ramesh, 2018] and
consider a similar latent variable intensity(I) as in [Tomkins
et al., 2018], indicating the extent of bullying in a post I .
Note that ours is the first structure learning algorithm that is
capable of learning meaningful latent variable dependencies
and other existing work including our Greedy-SL algorithm
is not capable of learning latent variables. Table 4 gives the
comparison of performance of A3SL with Greedy-SL, man-
ually defined rules inspired from Tomkins et al. [2018] and
logistic regression baseline. We observe that A3SL not only
performs the best (statistically significant, p = 0.05), but also
learns meaningful latent variable associations (intensity with
negative sentiment, negative and anonymity) as evident in Ta-
ble 5. BW refers to the presence of a bullying word in the
text. We can see that A3SL learns a variety of clauses: local
rules, priors, containing different combinations of feature, la-
tent variable, and target, abstracting the latent variable using
a complex combination of features and target variables.

4.3 Grounding Coverage and Correlation of
Latent Variables

When manually defining the structure of models such as HL-
MRFs, it is often challenging to define network rules that cor-
respond to intuition and are also true in the data. For example,
the manually-defined network rule in Table 3 captures that



Model AUC-PR
Pos.

AUC-PR
Neg.

AUC-ROC

Logistic Regression 0.5628 0.8820 0.7594
Greedy-SL 0.6294 0.8991 0.8105
Hypergraph Lifting (Kok et al.
[2009]) with L1 regularization
(Zhu et al. [2010])

0.5313 0.8885 0.8301

Human-Expert [Zhang et al., 2018] 0.7129 0.9180 0.8583
A3SL [our approach] 0.7342 0.9325 0.8755

Table 1: Area under precision-recall curve and ROC values for re-
covery and relapse prediction for Logistic Regression, Greedy-SL,
Human Expert, and A3SL

Comparison of Local Rules learned from A3SL with human rules

A. Human Expert: Contains either alcohol or sober signal
1. soberTopic(U)→ recovers(U); 2. alcoholTopic(U)→¬recovers(U)
B. A3SL: Containing either alcohol or sober signal
1. usesSoberWord(U, SW) ∧ containsSoberWord(U, I, SW)→ recovers(U)
2. usesAlcoholWord(U, AW)→¬recovers(U)
C. A3SL: Contains both alcohol and sober signals, capturing more uncertainty
1. alcoholTopic(U) ∧ usesSoberWord(U)→ recovers(U)
2. soberTopic(U) ∧ usesAlcoholWord(U, AW)→¬ recovers(U)

Table 2: Local rules from AUD recovery prediction HL-MRF Model
designed by human expert and learned by A3SL

Comparison of Network Rules learned from A3SL with human expert rules

D. Human Expert: Sample Network Rule
1. replies(U, U1, I) ∧ friendRetweets(U1, U, I1) ∧
friendContainsAlcoholWord(U1, I1, AW)→¬recovers(U)
E. A3SL: Similar to Human Expert
1. friendReplies(U1,U,I1) ∧ friendContainsSoberWord(U1, I1, SW)→ recovers(U)
2. friends(U, U1) ∧ friendContainsAlcoholWord(U1, I1, AW)→¬recovers(U)
F. A3SL: Combines linguistic features from AA user’s posts and friends’ posts
1. friends(U, U1) ∧ usesSoberWord(U, SW) ∧ friendContainsSoberWord(U1, I1, SW)
→ recovers(U)
2. friends(U, U1) ∧ ¬termFrequency(U) ∧ usesAlcoholWord(U, AW)
∧ friendContainsAlcoholWord(U1, I1, AW)→¬recovers(U)

Table 3: Comparison of network rules from HL-MRF Model de-
signed by human expert and learned by A3SL

if the AA-user’s friend uses alcohol words in a post and the
AA-user retweets it, then that indicates that the user does not
recover. From Figure 1(a), we observe that the average num-
ber of instances across all network rules in the human expert
model is less than 30, indicating that the manually identified
network rules may not be true in the data. On the other hand,
we observe that the average groundings for the network rules
learned by A3SL is approximately 200. Similarly, we ob-
serve that the network rules learned by A3SL have better data
coverage, covering all the AA-user instances, while the man-
ually defined network rules only cover a third of the instances.
The human expert clauses have less overlap as humans in-
tuitively tend to associate certain signals with recovery and
others with relapse. But, A3SL clauses have superior over-
lap, allowing for representing the inherent uncertainty present
in real-world data. Similarly, examining the correlation of the
learned values of latent variable intensity with the target vari-
able bullying in Figure 1(b), we find that it is consistently
better correlated across the cross-validation folds, which in-
dicates A3SL’s capability to learn meaningful dependencies
between features, latent and target variables.

Model AUC-PR
Pos.

AUC-PR
Neg.

AUC-ROC

Logistic Regression 0.2696 0.8608 0.5173
Greedy-SL 0.3798 0.9140 0.6997
Hypergraph Lifting (Kok et al.
[2009]) with L1 regularization (Zhu
et al. [2010])

0.2479 0.9116 0.6500

Human-Expert [Tomkins et al., 2018] 0.3269 0.9130 0.6753
A3SL [our approach] 0.3832 0.9202 0.7023

Table 4: Area under precision-recall curve and ROC values for bul-
lying and non-bullying prediction for Logistic Regression, Greedy-
SL, Human Expert, and A3SL

Latent Variable Rules learned by A3SL

A. Feature and Latent Variable Rules:
1. hatredTopic(I)→ intensity(I)
2. usesBullyingWord(I, BW) ∧ ¬posSentiment(I)→ intensity(I)
B. Feature, Latent Variable, and Target Rules:
1. intensity(I)→ bullying(I)
2. ¬anonymity(I) ∧ ¬bullyings(I)→¬intensity(I)
3. negative(I) ∧ intensity(I)→ bullying(I)
C. Priors:
1. ¬bullying(I)
D. Local Rules:
1. negative(I) ∧ hatredTopic(I)→ bullying(I)

Table 5: Latent variable associations to features and target learned
by A3SL
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Figure 1: Grounding coverage of network clauses in AA recovery
prediction (left) and correlation of latent variables with target vari-
ables in bullying detection (right)

5 Conclusion
In this work, we presented a deep RL structure learning algo-
rithm for HL-MRFs, A3SL, that asynchronously uses multi-
ple actor-learners in parallel to explore different parts of the
state space, thus possessing the capability to learn diverse
models, while remaining scalable. Our algorithm has the
capability to encode guidance from domain experts to learn
models that are semantically meaningful without compromis-
ing on performance. Our experiments on two important com-
putational social science applications demonstrate that A3SL
can learn model structures that capture the salient modeling
requirements of the domains.
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