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Abstract

In practice heterogeneous networks comprising of diverse nodes need to operate efficiently under a wide range of node mobility and
link quality regimes. In this paper, we propose algorithms to determine the goodput of flows in heterogeneous mobile networks.
We consider a scenario where some network nodes operate as routers while others operate as flooders, based on the underlying
forwarding policy. When a node operates as a router, it forwards packets based on the routing table as determined by the underlying
routing algorithm and when it operates as a flooder, it broadcasts packets to all its neighbors. We begin with the case of a single
network flow and demonstrate that the problem of determining the goodput is challenging even for this simple setting. We construct
a Bayesian network, and propose an algorithm based on the sum-product algorithm to determine the exact goodput. We extend
the proposed Bayesian network model for exact goodput calculation to feed forward networks with multiple flows. For a general
network with multiple flows, the problem becomes more challenging. The difficulty of the problem stems from the fact that node
pairs can forward traffic to one another, resulting in cyclical dependencies. We propose a fixed-point approximation to determine
the goodput in this case. Finally, we present an application scenario, where we leverage the fixed-point approximation to design a
forwarding strategy adaptive-flood that adapts seamlessly to varying networking conditions. We perform simulations and show that
adaptive-flood can effectively classify individual nodes as routers/flooders, achieving performance equivalent to, and in some cases
significantly better than that of network-wide routing or flooding alone.

1. Introduction

The emergence of the Internet of Things has seen rapid
growth and deployment of heterogeneous networks comprising
of diverse nodes (e.g., mobile nodes, static nodes, sensor nodes)
with varying capabilities to connect to the Internet (e.g., WiFi,
4G). Uncertainty and change in network connectivity due to
node mobility and wireless link quality are fundamental charac-
teristics of such networks. Analytically determining the good-
put of flows in heterogeneous networks is an important, yet un-
solved problem. A quick search yields plethora of research pa-
pers that determine the throughput of wireless networks, each
subject to its own set of assumptions and constraints [1, 2, 3].
However, limited attention has been devoted to determining the
goodput of flows in a mobile and wireless setting. In compar-
ison to throughput, goodput only takes the number of unique
packets reaching the destination into account.

In wireless networks, a variety of forwarding strategies have
been proposed, ranging from stateful routing protocols [4] to
flooding [5, 6]. The pros and cons of maintaining state in dy-
namic wireless networks has also been investigated [7, 8]. Man-
fredi et al. [9] show that in mobile networks with homoge-
neous node mobility and link characteristics, stateful routing
protocols such as OLSR [10] perform well in dense and stable
networks, whereas flooding is preferable in sparse and rapidly
changing networks. However, mobility and connectivity char-
acteristics observed in real-world measurements are often het-
erogeneous: while some nodes may have highly dynamic links,
there are also well-connected nodes forming sizable connected

components [11, 12]. In heterogeneous networks with both sta-
ble and dynamic components, it is likely that neither routing
nor flooding alone may perform particularly well in a given sce-
nario. In such scenarios, performance can be improved by op-
erating nodes as routers or flooders, depending on the network
characteristics. However, flooding by network nodes can re-
sult in duplicate packets reaching the destination, thus making
it necessary to analyze goodput instead of throughput to evalu-
ate performance.

In this paper, an extension of our prior work [13], we con-
sider a heterogeneous network where some nodes operate as
routers while others operate as flooders, as specified by the un-
derlying forwarding policy. Our objective is two-fold in this
paper. We propose algorithms to compute the goodput of flows
in a heterogeneous network based on local link characteristics
as well as the forwarding behavior of particular nodes (i.e.,
router or flooder). Secondly, we leverage this goodput calcu-
lation to design a forwarding strategy that seamlessly adapts
itself to changing network conditions (i.e., mobility, connectiv-
ity) and provides superior performance.

Our first goal is to design algorithms that determine the over-
all goodput based on network characteristics such as connectiv-
ity and mobility, given that a subset of nodes operate as routers,
while others operate as flooders. This problem is challenging
primarily due to two reasons - i) flooding can result in dupli-
cate copies of a packet reaching the destination along multiple
overlapping paths, ii) when there are multiple flows in a gen-
eral network, nodes can forward traffic to each other, thereby
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influencing their incoming and outgoing rates. For networks
with a single flow and feed forward networks with multiple
flows where we only encounter the first challenge, we adopt
a Bayesian network model and perform exact inference to de-
termine the goodput. For general networks with multiple flows,
the second challenge complicates exact inference and therefore,
we propose a fixed-point approximation to determine the over-
all network goodput.

Having determined the overall network goodput for a given
set of routers and flooders, our next objective is to leverage this
calculation to design a forwarding strategy that classifies in-
dividual nodes as routers or flooders to maximize the overall
network goodput. Our work in driven by the intuition that in a
wireless network with heterogeneous mobility and connectivity
characteristics, neither routing nor flooding alone may perform
well. Despite its apparent simplicity, this router/flooder classi-
fication is a challenging problem. While it is tempting to think
that classifying a node as a router or flooder only requires local
information, flooding at one node increases network traffic at
downstream nodes and may ultimately reduce overall goodput
due to congestion. In addition, one node operating as a flooder
may affect the usefulness of turning another node into a flooder,
implying subtle dependencies in the decision process.

Our contributions in this paper are as follows.

• We demonstrate via an example of a four node network
that determining the goodput exactly, even for a network
with a single flow, is non-trivial. We construct a Bayesian
network and design an algorithm that leverages the sum-
product algorithm to infer the exact goodput for a network
with a single flow. We extend the Bayesian network model
for inferring the exact goodput to feed forward networks
with multiple flows. For a general network with multi-
ple flows, the problem becomes more challenging as node
pairs can forward traffic to one another resulting in cyclical
dependencies. For this scenario, we propose a fixed-point
approximation for determining the goodput.

• We leverage the goodput calculation to design a forward-
ing strategy that determines which nodes should oper-
ate as routers and which ones should operate as flood-
ers so as to maximize overall network goodput. Our ap-
proach adaptive-flood assumes that an underlying native
routing protocol is available and greedily selects those
nodes as candidate flooders that maximize the overall net-
work goodput. The algorithm picks nodes as flooders in
decreasing order in which they contribute to maximizing
network-wide goodput; it stops when converting any of
the remaining routers into a flooder would result in a de-
crease in goodput. From an implementation perspective,
this means that each node needs to determine only one
piece of information, namely whether to unicast packets
to the next-hop neighbor specified in its forwarding table,
or to locally flood each packet to all neighbors.

• We show via simulation that adaptive flood outperforms
network-wide routing or flooding. In particular, at low
network loads flooding outperforms routing, while at high

network loads, performance is reversed. In contrast, adap-
tive flood matches or outperforms both approaches over
most or all of the range of loads in both homogeneous as
well as heterogeneous scenarios. From these results, we
conclude that i) the proposed fixed-point algorithm is an
effective way for determining the overall network good-
put, and ii) routing combined with adaptive flooding is a
promising solution to solve the challenges inherent in mo-
bile networking.

The rest of this paper is organized as follows. We discuss
related work in Section 2. We formalize the problem and the
underlying network model in Section 3. We first demonstrate
the inherent challenges involved in exact goodput calculation
via a simple example and then propose a Bayesian network
model based algorithm for exact inference in Section 4. For
general networks with multiple flows where exact inference is
difficult, we propose a simple fixed-point approximation tech-
nique for determining the goodput in Section 5. We describe
the adaptive-flood algorithm for classifying nodes into routers
and flooders and present simulation results evaluating the per-
formance of adaptive-flood in Section 6. We conclude the paper
and provide an outlook at future work in Section 7.

2. Related Work

In this section, we list some of the most influential work
studying the capacity of wireless networks and highlight how
this paper differs from existing work. A significant amount
of past research has been devoted to demonstrate the capacity
scaling of both flat and hybrid mobile networks [1, 2, 14, 15].
Gamal et al. study the delay-throughput scaling in mobile wire-
less networks [16]. In comparison to research on throughput
analysis and measurement, there is minimal work on goodput
in wireless networks [17, 18, 19]. In contrast to prior work,
we propose algorithms for computing the goodput (and not
throughput) of flows in wireless networks. We also utilize this
goodput calculation to design a forwarding strategy that adapts
seamlessly to changing network conditions.

We next present work related to network classification in
wireless networks. Several past research efforts [9, 20, 21]
have addressed the challenge of classifying mobile wireless net-
works based on connectivity and predictability. For example,
Manfredi et al. [9] propose a framework for organizing the
decision space of communication strategies (i.e., determining
whether the network as a whole should operate by flooding,
routing, or store-carry-and-forward) in a homogeneous network
based on connectivity and unpredictability so as to maximize
goodput. In contrast to [9], where classification has been done
for the network as a whole, the adaptive-flood algorithm de-
veloped in this paper adopts a per-node classification strategy
(route or flood) in order to maximize goodput.

Additionally, number of past efforts have sought to exploit
characteristics such as connectivity, predictability and mobil-
ity of wireless networks to design forwarding protocols that
enhance performance [4, 22, 23, 24, 25]. Epidemic routing
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Notation Definition
V set of all nodes
E set of all edges
F set of flows
F list of flooders
Ni neighbors of node i
fs, fd source and destination node of flow f
N list of Ni, ∀i ∈ V
Hi f next hop forwarder for node i for flow f
H next hop forwarder matrix
pi j link success probability between nodes i and j
P link success probability matrix
Φi j traffic originating from i and destined for j
Φ traffic matrix

Table 1: Notation

[5, 26] and multicopy routing [27] are designed for sparsely-
connected networks and use a store-carry-and-forward mecha-
nism and packet replication to battle poor connectivity. [23, 28]
make assumptions on the mobility pattern and network topol-
ogy to design forwarding protocols for intermittently connected
networks. Tie et al. [12] propose a routing protocol, R3, that
provides robust performance in diverse and varying connectiv-
ity regimes. They identify packet replication as the key fac-
tor governing performance for networks at opposite ends of the
connectivity spectrum (meshes and DTN). A survey of different
forwarding strategies designed for mobile wireless networks is
available in [29, 30]. None of this past research, however, inves-
tigates the question related to which nodes should flood/route in
a network with time-varying connectivity, which is the corner-
stone of our forwarding strategy.

3. Network Model

We consider a network with |V | nodes. Let F be the set of
flows in the network. The source and destination for any flow f
is denoted by fs and fd respectively. Let us consider two nodes
i and j and pi j as the probability of successfully transmitting a
packet from node i to node j. The link quality can vary both
due to the wireless channel and mobility of the nodes, but we
abstract away these details via the pi j link characterization. P is
the matrix of pi j’s and is referred to as the link success probabil-
ity matrix. We represent the network as a graph G(V, E) where
E denotes the set of all edges in the graph; an edge ei j exists if
pi j > 0.

We assume that the network has a native routing algorithm
and Hi f denotes the next hop neighbor for node i for flow f , as
obtained by the routing algorithm. We consider a simple case
where each node in the network can operate either as a router or
a flooder, but cannot perform both actions preferentially based
on the destination of the packet. We assume there are F flood-
ers in the network. If node i operates as a router, it forwards
packets according to Hi f ; otherwise it floods all packets. Let
Ni be the list denoting the neighbors of node i (node j is said
to be a neighbor of node i if pi j > 0). If node i operates as a

flooder, it sends the same packet to every node in Ni. To prevent
packets from circulating in the network in loops, nodes perform
duplicate packet transmission suppression.

We assume that time is divided into slots and packet trans-
missions take place at the beginning of each time slot. We as-
sume that node i transmits data at a rate of Ci packets per time
slot. Therefore, all outgoing links from node i can carry data
at the maximum rate of Ci. Ci and pi j together capture the ca-
pacity constraint for the link ei j. Φi j is the amount of traffic
originating at node i and destined for node j; Φ is the corre-
sponding traffic matrix. A summary of our notation is available
in Table I.

We model buffer overflow by adopting a fluid model in which
nodes probabilistically drop packets if the expected incoming
traffic rate exceeds that node’s outgoing transmission capacity,
Ci. Let ai denote the probability that a packet is successfully
received and forwarded through node i, assuming no losses due
to transmission errors. We refer to ai as the packet-passage
probability at node i. Let Ri be the incoming traffic rate at node
i. Then,

ai = min
(
1,

Ci

E[Ri]
)

(1)

Thus, when the expected incoming traffic rate is less than link
capacity, all arriving packets are successfully forwarded by that
node, (ai = 1). When the expected incoming traffic rate exceeds
the outgoing rate, arriving packets are successfully forwarded
by that node with probability Ci

E[Ri]
. We assume that E[Ri] in ai

is calculated over some large interval of time.
We define the goodput of a flow as the number of unique

packets received at the destination for the flow per time slot.
The overall network goodput is thus the sum of goodput for the
different flows. Our first goal in this paper is to design algo-
rithms to determine the goodput of flows in a heterogeneous
network. We then use this goodput calculation to design for-
warding strategies for these networks.

4. Exact Goodput Calculation

In this section, we construct a Bayesian network model to
determine the exact goodput of flows in a mobile wireless net-
work. We start with a simple example of a single flow in a
four node network to help the reader appreciate the need for a
Bayesian network for computing the goodput. We then proceed
to the more complicated scenarios of a single flow in a general
network and multiple flows in feed forward networks, design
algorithms to construct a Bayesian network and then use the
sum-product algorithm to determine the exact goodput.

4.1. Simple Four Node Network

We first consider a simple four node network as shown in
Figure 1(a) with a single flow f from A to D. We assume that
all links have the same success probability (i.e., pi j = p). We
assume that the shortest path from A to D is (A, B,D). For sake
of simplicity, we assume ΦAD = CA. We next determine the
exact goodput (in expectation) for this flow for three different
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Figure 1: Four Node Network and DAG construction
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Figure 2: Bayesian Network for Four Node Network

scenarios. This example will demonstrate that determining the
goodput exactly is non-trivial and help appreciate the complex-
ity of this problem. The methods outlined here serve as building
blocks for determining the exact goodput.

Scenario 1: All nodes are routers
A sends packets at a rate CA. The expected number of packets
reaching B in a time period T is pCAT . The rate-limiter at B
allows packets according to equation 1 and is given by aB =

min(1, CB
pCA

). The goodput (G f ) is given by,

G f = CA p2aB (2)

Scenario 2: A is a flooder; B,C,D are routers
In this scenario, A has two independent paths to D. Therefore,
one needs take into account the fact that the packet might reach
D along either or both paths, (A, B,D) and (A,C,D). In this
scenario, aB = min(1, CB

pCA
) and aC = min(1, CC

pCA
). Therefore,

the goodput G f is given by,

G f = CA(1 − (1 − p2aB)(1 − p2aC)) (3)

Scenario 3: A, B are flooders; C,D are routers
In this scenario, both A and B operate as flooders. Therefore, A
sends packets to both B and C. B being a flooder also broadcasts
packets, that can be received by C and D. Figure 1(b) shows the
directed acyclic graph (DAG) traversed by the flow originating
from A and destined to D. In this case, as C can receive packets
from both A and B, the probability of C receiving a packet via
A is p and via B is p2aB. Hence aC = min(1, CC

CA(1−(1−p2aB)(1−p)) ).

Determining the exact packet reaching probability at D is more
involved in comparison to the previous scenarios, because the
probability of receiving the packet from B and C are not inde-
pendent.

For ease of analysis, we introduce a few variables. Let Xi

be the indicator variable denoting that a packet reaches node
i. Let Yi be the indicator variable denoting that the packet is
available at the outgoing interface of node i. Xi and Yi might be
different because node i drops the incoming packets probabilis-
tically. Further, let Xi j be the indicator variable denoting that
the packet is successfully transmitted over link ei j. All indica-
tor variables are 1 if the packet is available and 0 otherwise. The
probability of the packet reaching D is P

[
XD|YA

]
. Determining

P
[
XD|YA

]
can be treated as an inference problem by construct-

ing a Bayesian network comprising of the indicator variables
Xi, Yi and Xi j as vertices.

Figure 2(a) shows the Bayesian network with the above men-
tioned random variables. It is clear that each node i (except
source and destination) in Figure 1(b) is represented by two ver-
tices Xi and Yi, while each edge ei j is represented by vertex Xi j

in Figure 2(a). Note that as node A is transmitting a packet,
YA is observed. The Bayesian network elegantly captures the
interdependence between the different indicator variables. For
example, given XAC and XBC , XC is conditionally independent
of all the other nodes in the network, i.e., given whether a packet
got through links eAC and eBC , the packet being received by C
is independent of all the other random variables in the network.
Using Figure 2(a), P

[
XD|YA

]
can be inferred from equation (4),

where Z is the set of all the random variables. As YA is ob-
served, P

[
YA

]
= 1 and thus P

[
XD,YA

]
= P

[
XD|YA

]
. Equation (4)

is derived using the classic sum-product algorithm [31].
There is a subtle, but important point that we illustrate us-

ing Figures 2(b) and 2(c). The Bayesian network captures two
kinds of dependencies, one where the conditional probabilities
are known apriori and another where the probabilities have to
inferred using equation 1. The values in the conditional proba-
bility tables of nodes Xi and Xi j are known apriori. However, the
conditional probability tables of nodes Yi are not known apriori
and have to be inferred at runtime. For example, in Figure 2(b),
XCD’s conditional probability table can be easily determined.
But YC’s conditional probability table (Figure 2(c)) is depen-
dent on ac. The value of ac is governed by equation 1 and can
only be determined once P

[
XC |YA

]
has been inferred. There-

fore, the probabilities have to be inferred in topological order,
thereby making this approach amiable to the sum-product algo-
rithm.

We note that the sum-product algorithm is applied in stages.
For example, since the conditional probability table for YC

has missing entries, to solve P
[
XD|YA

]
exactly and determine

the goodput, we first apply the sum-product algorithm to infer
P
[
XC |YA

]
and then using this, infer P

[
YC |XC

]
.

P
[
XD|YA

]
=

∑
(Z−YA−XD)

P
[
XD|XBD, XCD

]
P
[
XCD|YC

]
P
[
XBD|YB

]
P
[
YC |XC

]
P
[
XC |XAC , XBC

]
P
[
XBC |YB

]
P
[
YB|XB

]
P
[
XB|XAB

]
P
[
XAB|YA

]
P
[
XAC |YA

]
(4)
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The goodput G f = CAP
[
XD|YA

]
and is given by

G f = CA(p5aBaC − 3p4aBaC + p3aBaC + p2(aB + aC)) (5)

From this simple example, it is clear that due to the heavy
dependence of Yi on Xi, the probability of a packet reaching the
destination and thus the goodput is dependent on a large number
of random variables. To determine the packet reaching proba-
bility at a node, it is necessary to express the joint probability
distribution as a product of conditional probabilities and then
sum over the variables that are not of interest.

4.2. Single Flow in a General Network

In this subsection, we extend the approach described in the
previous subsection to a general network with a single flow.
From the simple four node example, we observe that when one
or more nodes operate as flooders, the set of nodes and links tra-
versed by a given flow’s packets form a directed acyclic graph
(DAG) instead of a path between the flow’s source and destina-
tion nodes. As a node never forwards the same packet twice,
loops are avoided, thereby ensuring that packets for a particular
flow move along a DAG.

We first determine the DAG G f (V f , E f ) traversed by flow
f from G(V, E). We propose an algorithm to construct the
Bayesian network G′f from G f and then use the sum-product
algorithm for exact inference to determine the goodput G f . A
simple description of the inputs and steps needed to calculate
the exact goodput are given in the beginning of Algorithm 1.

The DAG construction function determine-DAG() in Algo-
rithm 1 maintains two lists: the explored list V f and the to-be-
explored list S f . For flow f , DAG construction begins from
source fs. Initially S f contains only fs while V f is empty. The
while loop then iterates until S f is empty. At every iteration
of the while loop, the node s at the head of S f is considered
(in the first iteration the node is fs). Recall that there are F
flooders in the network. Therefore, s can be either a flooder
or a router. Depending on the role of s, the algorithm either
adds each neighbor or next hop neighbor to the to-be-explored
list, provided it is not already in the to-be-explored or explored
lists. The algorithm also adds the corresponding edges to E f .
Nodes are checked before being added to the to-be-explored list
to avoid loops in the DAG. The function finally returns the DAG
G f (V f , E f ).

The next step is to construct the Bayesian network
G′f (V

′
f , E

′
f ) from G f . The construct-Bayes-Net() function out-

lines the different steps for constructing the Bayesian network.
The algorithm first iterates through V f and for each vertex i in
V f (apart from fs and fd), adds vertices Xi and Yi in V ′f . For fs

and fd, the algorithm adds Y fs and X fd respectively. The algo-
rithm also adds the edge eXiYi to E′f . The algorithm then iterates
through E f and for each edge ei j adds vertex Xi j to V ′f and edges
eYiXi j and eXi jX j to E′f . Let X and Y denote the sets containing
the vertices Xi and Yi in the Bayesian network respectively.

Having constructed the Bayesian network, the final step is to
determine the exact goodput of the flow. Our goal is to infer the
P
[
X fd |Y fs

]
from G′f . Note that Y fs is observed. We first perform

a topological sort on the graph G′f . For a DAG, the topological

Algorithm 1 Single flow: exact goodput calculation
Input: Source-destination of flow, set of routers and flooders,
network graph, list of neighbors, router forwarding tables, link
success probability matrix, traffic matrix
Output: Exact goodput of the flow

Step 1: Determine the DAG traversed by the flow
Step 2: Construct Bayesian network from the DAG
Step 3: Topological sort the Bayesian network
Step 4: Determine goodput via exact inference on the Bayesian
network by iteratively applying sum-product algorithm

1: function G f = determine-DAG( f , F,G,N,H)
2: S f = [ fs], V f = [ ], E f = [ ]
3: while S f , [ ] do
4: [s] = head(S f )
5: if s , fd then
6: V f = V f + [s]
7: if s ∈ F then
8: for all i ∈ Ns do
9: if i < V f then

10: E f = E f + esi
11: if i < S f then
12: S f = S f + [i]
13: else
14: if Hs f < V f then
15: E f = E f + esHs f
16: if Hs f < S f then
17: S f = S f + [Hs f ]
18: S f = S f − [s]
19: return G f (V f , E f )

1: function G′f = construct-Bayes-Net(G f )
2: V′f = [ ], E′f = [ ]
3: for all i ∈ V f do
4: if [i] == fs then
5: V′f = V′f + Y fs
6: else if [i] == fd then
7: V′f = V′f + X fd
8: else
9: V′f = V′f + Xi + Yi

10: E′f = E′f + eXiYi

11: for all ei j ∈ E f do
12: V′f = V′f + Xi j

13: E′f = E′f + eYiXi j + eXi jX j

14: return G′f (V′f , E
′
f )

1: function G f = single-flow-exact-goodput(G′f , P, Φ)
2: U′f = topological-sort(G′f )
3: for all u ∈ U′f do
4: if u ∈ X then
5: Determine P[Xi |Y fs ] by sum-product algorithm {u denoted by Xi}

6: ai = min(1, Ci
Φ fs fd P[Xi |Y fs ] )

7: else if u ∈ Y then
8: P[Yi |Xi] = ai {u denoted by Yi}

9: else
10: P[Xi j |Yi] = pi j {u denoted by Xi j}

11: G f = Φ fs fd P[X fd |Y fs ]
12: return G f
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Figure 3: Bayesian Network Construction for a Feed Forward Network

ordering provides a linear ordering of its vertices such that for
every directed edge from vertex u to vertex v, u comes before v
in the ordering. Y fs and X fd are the first and last nodes in this
ordering U′f . As noted earlier, P

[
Yi|Xi

]
= ai can only be deter-

mined after P
[
Xi|Y fs

]
is inferred. This is possible as Yi always

appears after Xi in the topological ordering. The topological
traversal of nodes thus makes the sum product algorithm the
ideal candidate for inferring P

[
X fd |Y fs

]
.

4.3. Feed Forward Networks with Multiple Flows

In the previous subsection, we studied the single flow case
and observed that flooding can result in the same packet travers-
ing multiple overlapping paths to the destination. For the multi-
ple flow case, the problem is compounded by the fact that nodes
can forward traffic to one another, resulting in interdependen-
cies. In this subsection, we demonstrate how the exact goodput
calculation algorithm developed for the single flow case can be
extended for the special case of feed forward networks with
multiple flows. We investigate the multiple flow general net-
work case in Section 5.

In a feed forward network, the network is arranged in the
form of layers and all flows move in one direction (i.e., say
from left to right). If there are M layers in the network, we
assume that all sources are in layer 1 and all destinations are in
layer M. Additionally, we assume that nodes in layer k can only
receive data packets from nodes in layer (k − 1) and can send
data packets to nodes in layer (k + 1).

We consider the example of a simple four-layer feed forward
network (Figure 3(a)) to illustrate the goodput calculation. In
this figure, there are two flows, one from S 1 to D1 and the other
from S 2 to D2. We assume that nodes S 1 and R1 act as flooders,
while all other nodes act as routers. It is evident that similar to
the single flow case, the path traversed by each flow is a DAG.
The DAGs traversed by flow 1 and flow 2 are shown in Figures
3(b) and 3(c) respectively. The determine-DAG() function in
Algorithm 1 can be used to determine the DAGs for the indi-
vidual flows.

An additional step is required for feed forward networks,
which is to combine the DAGs traversed by the individual
flows. We observe from Figures 3(a), 3(b) and 3(c) that as all
flows are moving in the same direction and as nodes in layer
(k − 1) can only send data packets to nodes in layer k, a situa-
tion where a pair of nodes forward packets to each other cannot
arise. Therefore, the resulting graph obtained by merging the
different DAGs together will also be a DAG. This scenario is
depicted in Figure 3(d).

Once the DAG is created, one can utilize the construct-
Bayes-Net( ) function in Algorithm 1 to construct the Bayesian
network. The Bayesian network for the resulting DAG is shown
in Figure 3(e). However, there are some significant differences
from the single flow case. The values taken by a node (i.e., Xi,
Yi, Xi j) will be an F tuple, with each item in a tuple denoting
an indicator variable for a particular flow. A value of 1 for an
indicator variable denotes that the packet for that flow has been
received correctly, while 0 denotes otherwise. For example, in
Figure 3(e), the observed nodes YS 1 and YS 2 will be represented
by the tuples [1, 0] and [0, 1] respectively. Let p be the probabil-
ity of successfully transmitting a packet over any link in Figure
3(a). Let us now consider XS 1R1 . As S 1 is observed, therefore,
XS 1R1 takes values [0, 0], [0, 1], [1, 0] and [1, 1] with probabil-
ity (1− p), 0, p and 0 respectively. Similarly, XS 2R1 takes values
[0, 0], [0, 1], [1, 0] and [1, 1] with probability (1 − p), p, 0 and
0 respectively. Another major difference from the single flow
case lies in the calculation of the packet-passage probability ai.
For the multiple flow case, to calculate ai, it is essential to sum
the incoming traffic from all flows. Therefore, the total incom-
ing flow at R1 is p(ΦS 1D1 + ΦS 2D2 ). Hence, the value of aR1 in
this case is min

(
1,

CR1
p(ΦS 1 D1 +ΦS 2D2 )

)
.

Having constructed the Bayesian network, the next step is
to determine the goodput. A function similar to single-flow-
exact-goodput( ) in Algorithm 1 can be used to perform exact
inference to determine the goodput. To determine the overall
network goodput, one needs to add the goodput of the individ-
ual flows.
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5. General Networks: Approximate Goodput Calculation

In a general network with multiple flows, cyclical dependen-
cies can arise from node pairs forwarding traffic to one another.
For example, it is possible that some node j receives traffic from
node i for some flow f1 while node i receives traffic from node
j for some other flow f2. In this case, since ai depends on Ri

which includes traffic arriving from node j, and a j depends on
R j which includes traffic arriving from node i, we will need to
compute the packet-passage probabilities via a set of simulta-
neous equations to determine the exact goodput. Therefore, for
general networks with multiple flows we propose a fixed-point
approximation.

Before developing the fixed-point iteration, we revisit Sce-
nario 3 for the four node network in Section 4. To determine
the goodput approximately in this scenario, we apply the fol-
lowing assumption - probabilities of a packet reaching a node
along its incoming links are independent. In Figure 1(b), the
probability of the packet reaching B and C is given by αB = p
and αC = 1− (1− p2aB)(1− p) respectively. Assuming that the
probability of a packet reaching D through B and C are inde-
pendent, the approximate goodput at D is given by,

G f ≈ CA(1 − (1 − αBaB p)(1 − αCaC p)) (6)

We note that the approximate goodput for a single flow in
a general network or multiple flows in feed forward networks
can be easily computed by using the approach outlined above.
For achieving this, the topological ordering for the DAG tra-
versed by the flow(s) is determined. The nodes are then navi-
gated in topological order and the packet reaching probabilities
at a node are computed using the packet-passage probabilities
and assuming independence of incoming links.

Algorithm 2 shows the steps of the algorithm for determining
the approximate goodput for a single flow in a general network.
The algorithm starts by determining the DAG G f traversed by
flow f using the determine-DAG() function. It then obtains a
topological sort U f from G f . U f thus consists of a linear or-
dering of vertices. The algorithm next evaluates the probability
of a packet reaching the nodes in U f in order. To determine
the probability of a flow f packet (which has been flooded one
or more times upstream in flow f ’s DAG) reaching node i, we
assume that the probabilities of node i receiving that packet on
its incoming DAG links are independent of one another. As dis-
cussed earlier, this is clearly an approximation, since two input
links at node i may share common upstream nodes in the DAG.
Let αi f be the probability that a packet reaches node i for flow
f . For any node i in U f , let Ui f denote the list of the nodes in
U f appearing before node i in this ordering. We approximate
the probability of a packet reaching i by

αi f = 1 −
∏
j∈Ui f

(1 − α j f p jia j) (7)

Equation (7) takes into account the fact that the packet can be
received along multiple incoming links. It is also takes the suc-
cessful link transmission probabilities and the packet-passage
probabilities into account. Traversing U f in order ensures that
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Figure 4: Comparison between exact and approximate goodput

when the algorithm calculates αi f for node i, α j f of all nodes j
in Ui f has already been computed.

Algorithm 2 Single Flow: Approximate Goodput Calculation
1: function G f = single-flow-approx-goodput( f , F,G,P,N,H)
2: G f = determine-DAG( f , F,G,N,H)
3: U f = topological-sort(G f )
4: for i ∈ U f do
5: αi f = 1 −

∏
j∈Ui f (1 − α j f p jia j)

6: ai = min{1, Ci
Φ fs fd αi f

}

7: G f = Φ fs fdα fd f
8: return G f

We numerically verify the ‘closeness’ of the approximate ap-
proach to the exact method for the network in Figure 1(a) for
different link capacities in Figure 4. We observe from the figure
that the approximation is close to the exact value of the goodput
for this simple scenario.

5.1. Fixed Point Approximation

In this subsection, we leverage the approach for determining
the approximate goodput for a single flow for designing an al-
gorithm for determining the goodput of a general network with
multiple flows. To address the primary challenge of determin-
ing the packet-passage probabilities ~a, we propose a fixed-point
iteration. The details of the fixed-point approximation is shown
in Algorithm 3.

The algorithm begins with an initial feasible packet-passage
probability (~a0) (in our case 0). For each flow f , the fixed-point
iteration then uses ~al−1 at iteration l to calculate the incoming
rate at a node i (I f i). I f i is calculated using equation 7 that
uses the independence assumption between incoming links at a
node. The fixed point iteration then uses the incoming rates to
compute the packet-passage probabilities to be used in iteration
l+1, ~al. The fixed-point iteration converges when the maximum
absolute difference between the packet-passage probabilities in
two successive iterations are all below a threshold τ. Once the
fixed-point converges, the goodput for each individual flow f
is calculated. The overall goodput over all flows is then com-
puted by summing the goodput for the individual flows in the
network.
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Algorithm 3 General Network: Approximate Goodput Calcu-
lation
1: function GF = general-approx-goodput(F,G,P,Φ,N,H,F , τ)
2: ~a0 = 0, l = 1
3: for all f ∈ F do
4: G f = calculate-DAG( f , F,G,N,H)
5: U f = topological-sort(G f )
6: while (true) do
7: for all f ∈ F do
8: for j ∈ U f do
9: α j f = 1 −

∏
i∈U j (1 − αi f pi jai)

10: I f j = Φ fs fdα j f
11: for all s ∈ V do
12: Rs =

∑
f∈F

I f s

13: al
s = min{1, Cs

Rs
}

14: if max |~al − ~al−1 | < τ then
15: return false
16: l = l + 1
17: for all f ∈ F do
18: G f = Φ fs fdα fd f

19: GF =
∑
f∈F

G f

20: return GF

6. Application Scenario: Adaptive Forwading

In this subsection, we leverage Algorithm 3 to design a supe-
rior forwarding strategy for mobile wireless networks that im-
proves goodput. In a heterogeneous network with varying link
characteristics, neither routing nor flooding alone may perform
well. Our goal is to propose a forwarding strategy for heteroge-
neous mobile networks that adapts dynamically and seamlessly
to changing network conditions (i.e., mobility, connectivity) and
provides superior goodput. We propose a forwarding strat-
egy adaptive-flood, based on local link characteristics as well
as network-wide considerations, that determines which nodes
should forward traffic according to the forwarding table com-
puted by the native routing protocol, and which nodes should
broadcast their traffic to all neighbors.

Intuitively nodes with particularly reliable and stable links
should be well-suited to operate as routers, since the next-hop
toward a given destination determined by the native routing al-
gorithm would continue to work well in the future. Conversely,
a node with highly dynamic or unreliable links might better op-
erate as a flooder, exploiting the broadcast nature of common
omni-directional antennas to efficiently forward a packet to all
neighbors in a single transmission; packet copies can then be
forwarded from one or more of those neighbors (either via rout-
ing or flooding by that neighbor) toward the destination. We
first describe adaptive-flood and then demonstrate its superior
performance via simulation.

6.1. The adaptive-flood algorithm

Our approach, the adaptive-flood algorithm is an iterative
greedy algorithm that turns one router into a flooder at each it-
eration. In adaptive-flood, the router that is turned into a flooder
is that router whose change in status would greedily maximize
overall network goodput. This decision of converting a router

Algorithm 4 adaptive-flood router/flooder classification
1: function F = adaptive-flood(G,P,Φ,N,H,F , τ)
2: F = [ ]
3: GF = general-approx-goodput(F,G,P,Φ,N,H,F , τ)
4: while |F| , |V | do
5: F′ = [ ]
6: for all s < F do
7: T = F + [s]
8: GT = general-approx-goodput(T,G,P,Φ,N,H,F , τ)
9: if GT > GF then

10: F′ = s, GF = GT
11: if F′ == [ ] then
12: return F
13: else
14: F = F + F′

15: return F

to a flooder is primarily based on Algorithm 3. Algorithm 3
thus lies in the core of the adaptive-flood algorithm.

adaptive-flood begins with all network nodes initially classi-
fied as routers (Algorithm 4). It then computes the total (over
all source/destination pairs) goodput for the F flows by calling
the general-approx-goodput() function outlined in Algorithm 3.
In Algorithm 4, GF is the total network goodput when there are
F flooders. During each iteration in adaptive-flood, the total
goodput is calculated assuming if router s were to be turned
into the flooder, given the current list of routers and flooders.
The algorithm then selects that particular router F′ that gives
the maximum increase in total goodput if it were to be turned
into a flooder. This router is then added to the list of flood-
ers F. The algorithm terminates when either all routers have
been classified as flooders or if converting each of the remain-
ing routers into a flooder (individually) results in a decrease in
total goodput. Note that when a router is added to F, the useful-
ness (in terms of goodput) of converting some other router into
a flooder can change, since converting a node into a flooder can
change the incoming traffic rates at other network nodes.

As the adaptive-flood algorithm is a greedy algorithm and
leverages the fixed-point iteration in Algorithm 3 to determine
the goodput for a given set of flooders, it converges quickly.
Additionally, as adaptive-flood runs on top of the underlying
routing algorithm, and classifies nodes as routers or flooders,
it can be easily implemented in existing wireless networks with
limited effort and provide superior performance. Adaptive-flood
also does not require additional inputs in comparison to a stan-
dard link-state algorithm. We note that similar to stateful rout-
ing protocols such as OLSR, adaptive-flood algorithm can also
be run locally given broadcast link state updates.

6.2. Simulation Results

In this section, we report on simulations comparing the per-
formance of adaptive-flood with pure network-wide routing
and flooding. We find that adaptive-flood captures the best of
both approaches (routing and flooding), achieving performance
equivalent to (and sometimes better than) that of network-wide
routing or flooding alone.
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(a) Delivery Ratio (Scenario 1)
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(c) Delivery Ratio (Scenario 3)

Figure 6: Delivery ratio with different sets of flows for an 18-node network

  

Static Nodes Mobile Nodes

Node Movement

Figure 5: Topology: 18 Node Network

6.2.1. Simulation Setup
The simulator is written primarily in C++ and interfaced with

MATLAB. Our simulations are conducted on a grid topology
with r rows and c columns. The heterogeneous network primar-
ily used for simulation consists of 18 nodes as shown in Figure
5 (nodes colored white are stationary while the ones colored
black are mobile). Thus there are two regions with stationary
nodes separated by an intervening mobile region. This specific
topology is used to generate results in this paper.

We assume a time-slotted system and consider three time pe-
riods of different granularity - slots, intervals and epochs. A slot
is the time taken for a packet transmission. An interval consists
of multiple slots. A mobile node moves equi-probably to any
of the adjacent positions on the grid (up, down, left or right) at
the beginning of an interval. However, mobile node movement
is confined to the mobile region.

The time period of the longest duration is an epoch, con-
sisting of multiple intervals. Unicast routes are calculated us-
ing Dijkstra’s algorithm at the beginning of each epoch. Our
adaptive-flood algorithm also executes at this time granularity,
classifying nodes as routers/flooders. In Dijktsra’s algorithm,
link weight values are equal to 1/pi j, where pi j is the fraction
of intervals in the previous epoch that node i and j were in ad-
jacent or the same grid positions; the value of pi j between two
adjacent stationary nodes i and j is thus always 1. For exam-
ple, if an epoch consists of 10 intervals and nodes i and j are
in the same or adjacent grid positions in 3 of these intervals,
then the value of pi j is 0.3. The link success probability matrix

P is populated at the beginning of the epoch, before Dijkstra’s
algorithm is executed.

As adaptive-flood contains both routing and flooding nodes,
we compare it against two baseline approaches: pure routing
and pure flooding to demonstrate its performance gains. To con-
duct a fair comparison, the pure routing algorithm considered
here also calculates routes according to Dijkstra’s algorithm.
In pure flooding, each node forwards traffic to all its neighbors.
Flooders perform duplicate suppression so as to not forward the
same packet twice.

We make several simplifying assumptions in the simulator.
We do not model the effect of interference in the network, as-
suming that a node can receive multiple packets in the same
time slot (one along each of its incoming links); this would be
possible when a node has multiple interfaces operating on dif-
ferent channels, when a node has multiple directional antennae,
and in some CDMA settings. A node can, however, send only
one packet in one time slot. If a node is a router, the packet will
be received and processed only by the designated next hop; if
it is a flooder, its transmitted packet can be received by all its
neighbors present in adjacent grid positions. In our simulation,
we model data plane forwarding only; since adaptive-flood and
routing, all take advantage of common link state control infor-
mation, we do not explicitly simulate link state transfer.

All nodes have a single finite buffer of size 300 packets, and
packets arriving to a full buffer are dropped. Hence our sim-
ulator can simulate packet loss, a phenomenon that can occur
at high exogenous packet arrival rates. Each data point in our
simulation is obtained for the same number of total exogenous
packet arrivals (15000 packets). The number of intervals is
30 and the number of slots per interval is 10. The number of
epochs is adjusted so that the expected number of arrivals is
15000 exogenous packets.

We report results for the 18-node network in Figure 5 for
different sets of network flows. In each case, we vary the ex-
ogenous arrival rate and study two different performance met-
rics: overall network goodput and delivery ratio. As discussed
earlier, a flow’s goodput is the average number of unique pack-
ets delivered to the destination per time slot; the delivery ratio
is the ratio of the total number of unique packets delivered to
the total number of exogenous packet arrivals for the entire du-
ration of the simulation. The arrival rate is the expected total
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number of exogenous packet arrivals per time slot. The arrival
rate determines the traffic matrix Φ used in our models. For
each flow, each source node has the same probability of gen-
erating an exogenous packet arrival at the beginning of a time
slot. We multiply this probability by the total number of flows
to obtain the exogenous packet arrival rate. We increase the ar-
rival rate by increasing the probability of an exogenous packet
arrival. To ensure a fair comparison, in each run of the experi-
ment, when simulating the different algorithms, the same seed
values are used so that the sequence of the exogenous packet ar-
rivals is unchanged. We report results as mean values obtained
after multiple runs; the length of the error bars denotes twice
the standard deviation.

• Scenario 1: We consider mostly short (2-hop) flows. Ev-
ery node in the static region has a single 2-hop flow des-
tined to a randomly chosen other node in the same static
region (12 flows in all). There are also 3 single-hop flows
in the mobile region.

• Scenario 2: We have 12 flows in the static regions. There
are also 12 short flows originating from, and destined to,
the mobile region and 3 flows originating from one static
region and destined to the other static region.

• Scenario 3: In contrast to the other two cases, we have 25
flows in all, (some destined from one static region to other,
some within the mobile region and some between mobile
and static regions).

In the first scenario, most flows are confined to the static re-
gion; in the second there is a mix of flows in the static and
mobile region; while in the third scenario, flows either cross, or
are destined to, the mobile region. Hence, the main difference
among the three scenarios is that the overall reliability of routes
decreases, progressing from the first scenario to the third. Con-
sequently, one would intuitively expect routing to generally out-
perform flooding in the first scenario, while the opposite would
occur in the third scenario.

6.2.2. Comparing routing, flooding, and adaptive-flood
Figure 6 shows the delivery ratio of the different algorithms

for the above three scenarios. For scenario 1 (Figure 6(a)), we
observe that pure (i.e., network-wide) routing performs com-
parable to pure flooding in the low arrival rate regime but then
outperforms pure flooding as the arrival rate increases. The dif-
ference in delivery ratio at low arrival rate is due to the fact that
in case of pure routing, packets are dropped in the mobile re-
gion; in the case of pure flooding, packet duplication via flood-
ing ensures that at least one copy of most packets get delivered
to the destination. The reason for the relatively poorer perfor-
mance of flooding at higher arrival rates is that as the network
becomes congested, duplicate packets cause other packets to be
discarded at intermediate routers, resulting in decreased good-
put.

In scenario 2 (Figure 6(b)), we observe that pure flooding
outperforms pure routing at low arrival rates, while the relative
performance ordering is reversed at higher arrival rates. Since
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Figure 7: Delivery Ratio and Goodput for a 18-node network

approximately half of the flows are in the mobile region (and
these flows have less reliable paths), pure routing has a low
delivery ratio at low arrival rates. Once again, increased con-
gestion results in poor performance of flooding at higher ar-
rival rates. In scenario 3 (Figure 6(c)), as end-end path reliabil-
ity is low, pure routing performs poorly, marginally overtaking
pure flooding as the arrival rate increases. The three scenar-
ios thus demonstrate situations when pure routing outperforms
pure flooding, and vice versa.

Next, we turn our attention to the performance of our
adaptive-flood algorithm1. The shaded regions in Figure 6 in-
dicate the arrival rate regime where the adaptive-flood outper-
forms both routing and flooding. It is evident from the figure
that while flooding and routing perform well at low and high
arrival rates respectively, the adaptive-flood algorithm achieves
performance equivalent to (and better in the shaded regions)
than that of pure routing or flooding alone. For example, in Fig-
ure 6(b), the performance of adaptive-flood exceeds that of both
routing and flooding in the shaded region, for arrival rates be-
tween 2 and 6 arrivals per time slot. The superior performance
of the adaptive-flood algorithm can be attributed to the fact that
it dynamically adapts the number of flooders selected based on
the arrival rate. For example in Figure 6(b), the algorithm se-
lects around 10 nodes as flooders when the arrival rate is 2 and
selects 2.11 nodes on average as flooders when the arrival rate
is 12. We note that adaptive-flood also often selects stationary
nodes as flooders. Turning stationary nodes into flooders can

1In some cases, packet-passage probabilities in the fixed point iteration of
the adaptive-flood algorithm do not converge to a fixed point, often oscillating
between two sets of values. In such cases we select one of the sets of values
and use it to determine the total goodput.
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present multiple entry points into the mobile region. Also if a
given stationary node is congested because of a large number
of flows through it, turning other stationary nodes into flooders
can help find additional paths for these flows, thus increasing
goodput.

6.2.3. Performance with a larger number of flows
We next consider the 18-node network scenario, where each

node originates flows destined to every other node. There are
thus 18 ∗ 17 = 306 flows in the network. Figure 7 shows the
delivery ratio and goodput for different arrival rates for the var-
ious algorithms. Once again, we observe that when the arrival
rate is low, the delivery ratio of pure flooding is higher than
pure routing while the opposite holds at high arrival rate. We
also observe that the performance of our greedy algorithms is
equivalent or superior to either pure routing or flooding.

Comparing goodput for the different schemes (Figure 7(b)),
we find that, as expected, flooding outperforms routing in the
low arrival rate regime. Interestingly, although the delivery ra-
tio decreases with increasing exogenous arrival rate, the good-
put increases since the absolute number of packets delivered
increases with higher arrival rate.

7. Conclusion

In this paper, we investigated the problem of determining
the goodput of flows in a heterogeneous mobile network. We
started with the simple case of a single flow and designed a
Bayesian network model that leveraged the sum-product ap-
proach for determining the exact goodput. We extended the
Bayesian network model for determining the exact goodput to
feed forward networks with multiple flows. For a general net-
work with multiple flows, where nodes forward traffic to each
other, we developed a fixed-point approximation to determine
the goodput. We studied an application scenario where the
fixed-point approximation can be utilized to design a forward-
ing strategy for heterogeneous mobile networks, comprising of
both stable as well as highly dynamic components, in which
neither uniform routing nor flooding at all network nodes per-
forms well. We developed an iterative algorithm adaptive-flood
that individually determines for each node whether it should
operate as a router or a flooder. This decision of operating a
node as router or flooder is based on considerations such as the
quality of its links, the amount of traffic traversing it, and the
effect of turning routers into flooders on overall goodput. Via
simulation, we showed that adaptive-flood yields performance
equivalent to, and often significantly better than, that of baseline
routing or flooding alone. In future work, we plan to investigate
the performance gains achievable by preferentially routing or
flooding packets based on their destination.
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