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Abstract—Accurate wireless channel quality prediction over
4G LTE networks continues to be an important problem as
future channel predictions are widely leveraged to meet the
strict requirements of applications such as 360-degree video,
AR/VR, and online games. The availability of large amounts of
wireless channel data, the increase in computational power and
the advancements in the field of machine learning provide us the
opportunity to design learning-based approaches to address the
channel quality prediction problem. In this paper, we design dis-
criminative sequence-to-sequence probabilistic graphical models,
specifically sparse Gaussian Conditional Random Fields (GCRF)
models to accurately predict future channel quality variations
in 4G LTE networks based on past channel quality data. In
contrast to prior work that has primarily focused on designing
parsimonious Markovian models or computationally-intensive
deep learning models, the sparse GCRF models designed here
provide superior performance while being highly interpretable
and computationally efficient, thus making them an ideal choice
for practical deployment. To validate the efficacy of our sparse
GCRF model, we compare its performance (i.e., root mean
squared error and mean absolute error) with i) linear regression
and ii) ARIMA and iii) the state-of-the-art deep learning model
on real-world 4G LTE channel quality data collected under
varying levels of user mobility for two cellular operators and
observe that the GCRF model provides significantly higher
performance improvement.

Index Terms—channel quality estimation, Gaussian Condi-
tional Random Fields

I. INTRODUCTION

With the projected explosive increase in mobile wireless
traffic in next generation cellular networks [1], accurately mod-
eling and predicting wireless channel quality variations has
become an extremely important problem. While a significant
amount of research effort, starting from the seminal two-state
Markov channel model [2] to the state-of-the-art deep learning
models [3], has been devoted to predicting future channel
variations, revisiting the channel quality prediction problem
in cellular networks is critical for meeting the requirements
of today’s high bandwidth, low latency applications such as
AR/VR, 360-degree videos and online games. The availability
of computational power and large amount of 4G LTE channel
quality data, together with the growth of machine learning
algorithms present us the opportunity to design models that
provide superior channel prediction, and to leverage these
predictions for improving user quality of experience (QoE)
and application-level performance over cellular networks.

In this paper, our goal is to design discriminative probabilis-
tic graphical models, specifically spare Gaussian Conditional

Random Fields (GCRF) models that achieve superior predic-
tion performance of wireless channel variations (e.g., signal
strength, uplink and downlink bitrate) in cellular networks.
In comparison to existing analytical approaches that focus
on designing Markovian models that exploit the underlying
characteristics of the wireless medium (e.g., Rayleigh or
Rician fading channels) [4], [5], and deep learning models [3],
[6] for wireless channel modeling and prediction, we design
spare GCRF models for this prediction task.

Sparse GCRF models have the unique characteristic that
they provide good explainability and interpretability (similar to
Markovian models) along with superior modeling and predic-
tive power (similar to deep models), which make them an ideal
candidate for the channel prediction problem. Additionally, the
sparse nature of the model ensures that it takes requires only
limited computational resources to train. For example, sparse
GCRF models take significantly less time to train (i.e., only
few minutes) when compared to deep models that usually take
few hours. These attributes make sparse GCRFs an attractive
model for practical deployment.

In order to make effective predictions, we cast wireless
channel quality prediction as a time series prediction problem
where the objective is to predict future variations (e.g., signal
strength) based on past data. We then design spare GCRF
models [7], a structured regression approach to successfully
encode dependencies between past and future channel quality
data. Sparse GCRF models take entire past sequences into ac-
count to make future predictions and thus generally outperform
analytical and statistical models [8], [9]. As sparse GCRFs
are probabilistic graphical models that only learn the required
dependencies among the output variables and those between
the input and the output, they are inherently interpretable.

To demonstrate the efficacy of our sparse GCRF model,
we conduct experiments on channel quality data collected
over 4G LTE networks in multiple vehicular (i.e., bus, car
and train) and pedestrian mobility scenarios for two different
operators. The dataset contains four channel quality metrics,
namely RSRP, RSRQ, downlink and uplink bit rate collected
simultaneously at a one second time granularity. We design
separate models to predict each of these metrics and com-
pare the performance of our model with the state-of-the-art
LSTM based deep learning model and two baselines—linear
regression and ARIMA. We observe that our model signif-
icantly outperforms the baselines in all scenarios, yielding
a performance improvement of 20% on average. Our main



performance evaluation metrics are the root mean squared
error (RMSE) and the mean absolute error (MAE).

Overall, our analysis and results demonstrate that the trained
GCRF model has limited data and computational requirements
at test time, is highly interpretable and provides superior
prediction performance. These qualities make it a practically
beneficial model that can be deployed to improve application-
level performance in 4G LTE networks.

II. RELATED WORK

Wireless channel quality prediction continues to be one of
the most important problems in communications and network-
ing research as an ever-increasing number of applications (e.g.,
AR/VR, IoT applications, online games) rely on good channel
prediction for efficient data transfer and for achieving good
user QoE. The earliest work in this space is the two state
Gilbert and Elliot Markov model. Since then, a large number
of Markovian models have been designed to provide good
performance for a variety of different settings, environments
and technology standards [10], [11].

Though Markovian models enhance our understanding of
the wireless channel and help us appreciate the impact of
various factors such as multi-path fading, shadowing, and
path loss on performance, they usually suffer from poor
prediction performance in real-world settings as they only take
a limited amount of history into consideration while making
these predictions. Therefore, in recent years, a number of
statistical techniques (e.g., regression, filtering) and machine
learning models, in particular deep learning models have been
proposed for solving different problems in the communications
domain. For example, deep learning models have been shown
to provide good performance for geo spatio-temporal modeling
and prediction in cellular networks [6], [12]–[16]. Similarly,
in our recent work [3], we designed a deep learning model
that provides good signal strength prediction in a variety of
different settings and networks.

One of the main limitations of existing work that use ma-
chine learning techniques to solve problems in the communica-
tions and networking field is that majority of them use machine
learning models as a black-box and limited attention has been
paid to choosing the most appropriate model for a specific
problem. Additionally, most research efforts in this space has
relied on easy ready-to-use packages such as TensorFlow [17]
and scikit-learn [18] and has seldom explored probabilistic
models such as Conditional Random Fields or Markov Ran-
dom Fields and their Gaussian and sparse variants that are
usually available in the form of ‘research’ code. Probabilistic
graphical models, particularly the sparse GCRF models that we
explore here have been shown to provide great performance
for a diverse set of prediction tasks [8], [9]. In contrast to
prior work, we design GCRF models for the wireless channel
quality prediction problem and aim to demonstrate the utility
of this relatively unexplored, yet powerful model to address
important problems in the communications domain.

III. PROBLEM STATEMENT & GCRF PREDICTION MODEL

In this paper, our goal is to design models that can accu-
rately model and predict wireless channel fluctuations in 4G
LTE networks. In addition to maintaining traditional QoE guar-
antees, many applications such as 360-degree videos, AR/VR
and online games depend strongly on accurate prediction of
cellular network channel variations. In the next subsections,
we present the problem statement and describe our sparse
GCRF model for the channel quality prediction problem. We
then validate the efficacy of our sparse GCRF model via
experiments on real-world channel quality measurement data
collected over multiple 4G LTE networks (Sections IV and V).

A. Problem Statement

We formulate the channel quality prediction problem as a
time-series prediction problem where at each time T , one
has a sequence of past measurement values in a window
size of n (i.e., XT = [xT−n, xT−(n−1), ..., xT−1, xT ]) that
is used to predict variations for k steps into the future (i.e.,
ŶT = [ŷT+1, ŷT+2, ..., ŷT+(k−1), ŷT+k]). Note that YT denotes
the actual measurement values. In this work, we consider
and predict multiple different metrics of the wireless cellular
channel, namely Reference Signal Received Power (RSRP),
Reference Signal Received Quality (RSRQ), uplink bitrate,
and downlink bitrate.

B. Why sparse GCRF models for channel prediction?

Before describing our solution, we present a case outlining
the benefits of investigating GCRF models for solving various
prediction tasks in the communications domain, an example
of which is the channel quality prediction task studied here.
Statistical techniques (e.g., ARIMA, regression) and Marko-
vian models are highly interpretable and help in understanding
the influence of the underlying characteristics (e.g., multi-
path fading, path loss) on the quality of the wireless channel,
but often provide below par prediction performance as they
take limited amount of historical data into consideration and
fail to capture the complex interdependencies in the data. To
address performance issues, over the past few years, deep
learning models have emerged as an attractive alternative, but
they suffer from high computational requirements and lack of
interpretability.

This provides us the opportunity to explore and develop dis-
criminative sequence-to-sequence probabilistic graphical mod-
els, specifically sparse GCRF models that capture the best of
both worlds (i.e., statistical models and deep learning models).
Being graphical models, spare GCRF models are inherently
interpretable as one can peruse through the learned weights
and understand the connections responsible for generating the
predictions. Additionally, being sequence-to-sequence models,
sparse GCRF are ideal for time series prediction tasks that
require mapping input sequences to output sequences. As
sequence-to-sequence models take entire input sequences into
consideration when predicting the future, sparse GCRFs pro-
vide superior performance than traditional analytical models
and often in the same ballpark as deep learning models.



Another attractive attribute of sparse GCRF models is that they
are computationally efficient and require only a fraction of
the time needed to train deep learning models. These qualities
make GCRF models highly desirable and practically feasible
for many real-world applications [8], [9].

C. GCRF Prediction Model

GCRF models are the Gaussian variant of Conditional
Random Fields (CRF) models [19]. CRFs are discriminative
probabilistic graphical models that capture the dependencies
between the output variables and those between the input and
the output via a graphical model and do not explicitly encode
the dependencies among the inputs. Thus, CRFs primarily
focus on the relationship between the output variables, thus
modeling the posterior distribution of the future wireless
channel quality given the historical wireless channel quality.
As channel quality prediction is a continuous-valued prediction
problem and the basic CRF model is designed for discrete val-
ued data [19], we consider a recent version of CRFs extended
to structured regression, sparse GCRFs [7], for predicting
future wireless channel quality variations. The sparse GCRF
model that we design only captures the desired dependencies
and thus informs us about the relationships in the graphical
model that are useful for the prediction task.

The distribution modeled by GCRFs is given by,

P (YT | XT ; Λ,Θ) =
1

Z(XT )
exp(−Y ′T ΛYT − 2X ′T ΘYT )

(1)

where Θ and Λ are parameters/regression coefficients of the
GCRF model. Θ is the adjacency matrix containing the edges
between xt and yt, while Λ is the inverse covariance matrix,
containing the edges amongst the yt’s. The CRF is a Gaussian
distribution with mean −Λ−1Θ′XT and variance Λ−1. Z(XT )
in Equation 1 is the partition function, which ensures that the
posterior is integrated to 1.
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Fig. 1: GCRF Prediction Model Architecture

Figure 1 provides an overview of the architecture of the
GCRF prediction model. The architecture comprises of a data
pre-processing component, which pre-processes the wireless
channel quality measurement data for the various channel
metrics and the different mobility scenarios. We then split the

processed data into train and test samples. The GCRF model
then learns the values of the parameters based on the training
data. Once the training process is complete, we have the
trained GCRF model that uses the test samples and generates
the desired predictions.

D. GCRF training and testing

At training time, the goal is to learn the values of the
parameters Θ and Λ based on the training data. We use the
maximum likelihood estimation approach to determine the
parameters by maximizing the probability of the data given
the parameters (i.e., the likelihood function).

max
Λ,Θ

P (y | x; Λ,Θ) (2)

Maximizing the likelihood function in Equation 2 is equiv-
alent to minimizing the negative log-likelihood, which is what
we perform in our implementation (Equation 3).

min
Λ,Θ
−log(P (y | x; Λ,Θ)) (3)

To avoid overfitting the model and to ensure that it general-
izes better, we use regularization, an approach that penalizes
high-valued regression coefficients. This is achieved by adding
a regularization term to the maximum likelihood estimate
equations above. As our objective is to learn a sparser set
of regression coefficients by driving the less contributing co-
efficients to zero (i.e., the most desired dependencies), we use
L1 regularization. After expanding P (y | x; Λ,Θ), and adding
L1 regularization, the optimization function is as follows:

min
Λ,Θ
−log|Λ|+ 1

k
tr(Y TY Λ+2Y TXΘ+Λ−1ΘTXTXΘΛ−1)

+ λ(||Λ||+ ||Θ||) (4)

where k is the number of samples in X and Y . The last
term λ(||Λ||+ ||Θ||) gives the regularization term, where λ is
the regularization constant. We adopt the optimization method
proposed by Wytock et al. [7] for solving the GCRF with L1

regularization. This optimization approach uses a second-order
active set method, which at first iteratively produces a second-
order approximation to the objective function without the
L1 regularization term. The approximated objective function
is then solved with L1 regularization term using alternating
Newton coordinate descent.

Figure 2 shows an example of a trained GCRF model that
uses n input sample points to predict k steps into the future.
We note that we start with a fully-connected graph between
x and y and between y’s. The use of L1 regularization drives
some of these edge values to zero, thus yielding a sparser
graph after training. In Figure 2, we have omitted some edges
between x and y to illustrate the sparser nature of the graphical
model learned after training.



  

      n+1ŷ
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Fig. 2: Trained GCRF Model

E. GCRF Implementation Details

We use SGCRFPy, a Python toolkit for sparse GCRFs1 to
implement our models. The first 75% of the dataset is used for
training the model and the remaining 25% is used for testing.
At training time, our GCRF models use past n seconds as
input to predict the next k seconds. We use a sliding window
approach that moves the window one second at a time to cover
the entire data. We use n = 20 and k = 10 in our experiments.
The parameter Λ is initialized to the identity matrix and Θ
is initialized to all zeros. Using regularization constant λ =
0.1 and 10, 000 iterations, the model converges on a set of
dependencies learned from the training data. We train separate
GCRF models for the wireless channel quality metrics for each
mobility scenario for both network operators.

At test time, prediction for the next k seconds is generated
from a test sequence of length n using the parameter values
Λ and Θ learned at training time. The predicted values Ŷ
are compared with the ground truth channel quality values
Y , and the RMSE and MAE metrics are computed. For one
configuration of parameter values, the training time for the
model is around 20 minutes on a standalone lab machine,
while the testing time is only a couple of minutes. The memory
requirement for executing the GCRF model is also low.

IV. DATASETS AND DATA PREPROCESSING

We use a recently collected 4G LTE dataset [20] consisting
of various channel quality metrics collected for two major
mobile network operators (anonymized as Operator A and
B) in Cork City, Ireland, in vehicular and pedestrian mobility
scenarios using a Samsung J5 mobile phone. The G-NetTrack
Pro mobile network monitoring tool is used for collecting the
channel metrics. The vehicular measurements are collected by
traveling in a car, bus, and train, whereas the pedestrian
measurements are collected by walking around the city. The
measurements are collected at one second granularity. Multiple
traces are collected in every scenario and each trace is around
15 minutes long. We combine these traces to obtain a single
one hour long trace for each mobility scenario for both
network operators. The dataset contains around 2% missing
values. We fill them using linear regression. The dataset

1Sparse GCRF: https://github.com/dswah/sgcrfpy.

consists of the following channel quality metrics, which we
use for prediction.
• RSRP: Reference Signal Received Power represents the

average power of LTE reference signals. It is measured
in dBm.

• RSRQ: Reference Signal Received Quality represents
the ratio between RSRP and Received Signal Strength
Indicator (RSSI). It indicates the quality of the received
reference signal and is measured in dBm.

• Downlink bitrate: It is the download rate measured at
the device in kbit/s.

• Uplink bitrate: It is the uplink rate measured at the
device in kbit/s.

40 80 120 160 200

Time (Seconds)

-120

-100

-80

-60

R
S

R
P

 (
d

B
m

)

Operator A

Operator B

(a) RSRP (Train)

40 80 120 160 200

Time (Seconds)

0

2

4

6

8

D
o

w
n

li
n

k
 b

it
ra

te
 (

k
b

it
/s

)

10
4

Operator A

Operator B

(b) Downlink bitrate (Pedestrian)

Fig. 3: Channel Quality Variations

Figure 3 shows the RSRP and downlink bitrate for the train
and pedestrian mobility scenarios for both mobile operators,
respectively. We observe from the figure that the channel qual-
ity metrics vary significantly over time for both operators. We
hypothesize environmental factors, mobility, network coverage
along with the operators’ internal traffic policy as the primary
reasons behind these variations [20].

V. EXPERIMENTAL EVALUATION

In this section, we compare the performance of our GCRF
model with the following models.
Linear regression: This model uses linear extrapolation for
generating future predictions based on the input data.
ARIMA (p, d, q): This model has three components—AR
(autoregressive term), I (differencing term) and MA (moving
average term), which are specified by p, d and q respectively.
The number of past values used for predicting the future is
denoted by p, the degree of differencing (i.e., the number of
times the differencing operation is performed to make a series
stationary) is denoted by d, and the number of error terms
used to predict the future values is denoted by q.
LSTM based Deep Learning Model: This is the state-of-the-
art LSTM based deep learning model for channel prediction
[3]. It is a sequence-to-sequence model that uses recurrent
neural networks as the underlying neural network architecture.

The main evaluation metrics used in our experiments are the
root mean squared error (RMSE) and the mean absolute error
(MAE), which are given by equations 5 and 6 respectively.

RMSEj =

√∑h
i=1 (ŷij − yij)2

h
(5)
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Fig. 4: RMSE Results (Bus, Operator A)

MAEj =

∑h
i=1 |ŷij − yij |

h
(6)

where yij is the ith test sample for jth prediction step, ŷij is
the predicted value of yij , and h is the total number of test
samples.

We first present the RMSE and MAE results and then
discuss the qualitative results. Due to lack of space, we mainly
present results for the bus mobility scenario for operator A,
though we obtain similar results for all other settings as well.

A. RMSE Results

In this subsection, we compare the RMSE performance
of the sparse GCRF model with the baselines. Figure 4
shows the performance of the models for the channel quality
measurements conducted on a bus for the different metrics
(i.e., RSRP, RSRQ, downlink bitrate and uplink bitrate) for
operator A. We observe from the figure that the deep model
outperforms ARIMA and linear regression for RSRP and up-
link, and provides similar performance to ARIMA for RSRQ.
For downlink, the performance of the deep learning model
is poor and hence we omit it from Figure 4(c). The primary
reason is that variation in the downlink dataset is high, which
throws off the prediction performance of the deep model.
Additionally, we note that the datasets studied in this paper
are different from the ones studied in [3]. In comparison, the
GCRF model significantly outperforms the linear regression,
ARIMA and the deep models for all channel quality metrics.

We also see that the RMSE values for the baselines increase
considerably for each predicted time step further into the
future, while there is a gradual increase in the RMSE values
for the GCRF model. This shows that the GCRF model is able
to predict future values more accurately than the baselines.

We attribute this performance improvement to the sequence-
to-sequence modeling behavior and the sparse nature of the
GCRF model that enables it to learn only the most important
dependencies.

Table I shows the RMSE values for all the channel quality
metrics calculated as an average over 10 future predicted time
steps for all mobility scenarios and both network operators. We
observe that GCRF outperforms the baselines for all channel
quality metrics. The average performance improvement of
GCRF over linear regression, ARIMA and LSTM is 24%, 15%
and 16%, respectively.

TABLE I: Average RMSE Results

Vehicle Metrics GCRF LSTM ARIMA Linear
Operator

Bus RSRP 5.21 5.46 6.26 7.2
Operator A RSRQ 1.49 1.76 1.77 1.88

DL 11700.12 20075.16 15411.92 16519.71
UL 155.1 166.76 193.0 208.13

Bus RSRP 4.85 5.2 5.53 6.01
Operator B RSRQ 1.21 1.32 1.43 1.64

DL 8976.44 13205.36 10763.86 11699.42
UL 180.49 188.05 223.47 237.88

Car RSRP 5.11 5.15 6.1 6.56
Operator A RSRQ 1.98 2.46 2.28 2.52

DL 9332.36 21885.73 10113.7 11062.18
UL 147.59 147.79 157.26 166.3

Car RSRP 5.56 6.05 7.04 7.66
Operator B RSRQ 1.23 1.29 1.39 1.62

DL 13217.17 29096.05 16826.13 19611.85
UL 243.63 249.56 319.87 340.71

Pedestrian RSRP 3.15 3.19 3.76 4.15
Operator A RSRQ 1.5 1.51 1.69 1.94

DL 4383.06 8461.25 5005.38 5350.42
UL 89.18 88.8 106.59 107.85

Pedestrian RSRP 4.06 4.02 4.91 5.08
Operator B RSRQ 1.34 1.41 1.52 1.66

DL 10113.42 21826.29 10802.04 12314.23
UL 185.4 188.45 202.62 242.01

Train RSRP 7.69 8.01 8.65 9.51
Operator A RSRQ 1.99 2.0 2.37 2.72

DL 2977.97 5710.54 3452.03 3670.14
UL 61.66 64.35 66.47 75.16

Train RSRP 4.42 4.42 5.45 6.53
Operator B RSRQ 1.29 1.31 1.4 1.69

DL 1609.09 2128.48 1903.57 2094.66
UL 46.77 49.51 53.07 56.51

B. MAE Results

In this subsection, we discuss the performance of the models
with respect to MAE. Due to lack of space we only present
limited results for MAE. Figure 5 shows the performance of
the models for RSRP and uplink for the bus mobility scenario
for operator A while Table II shows the MAE values for all
the channel quality metrics calculated as an average over 10
future predicted time steps considering all mobility scenarios
and both network operators. Similar to the RMSE results,
we observe that the GCRF model significantly outperforms
the linear regression and ARIMA baselines for all channel
quality metrics for MAE as well. GCRF shows 26%, 16% and
20% average improvement over linear regression, ARIMA and
LSTM, respectively.
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Fig. 5: MAE Results (Bus, Operator A)

TABLE II: Average MAE

Metrics GCRF LSTM ARIMA Linear
RSRP 3.37 3.68 4.13 4.7
RSRQ 0.94 1.05 1.07 1.26

DL 5159.08 10745.31 6124.48 6958.74
UL 86.39 93.64 103.8 115.9

C. Qualitative Results

In this subsection, we discuss the qualitative performance of
the models by comparing their one step predictions with the
actual values. Due to lack of space, we present representative
results for RSRP for the bus mobility scenario for operator A.
Figure 6 shows the predictions of the GCRF model, ARIMA
and LSTM. From the figure, we observe that the predictions
generated by the GCRF model match the actual values more
closely in comparison to ARIMA and LSTM. This is because
GCRF takes entire input sequences in account to predict the
future and is thus able to make more informed decisions in
comparison to the statistical techniques that attempt to model
the data using linear extrapolations.
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VI. CONCLUSION

In this paper, we investigated the channel quality prediction
problem in 4G LTE networks. We developed discrimina-
tive probabilistic graphical models, specifically sparse GCRF
models to accurately predict future wireless channel quality
variations (i.e., RSRP, RSRQ, uplink bitrate, downlink bitrate)
by taking historical channel quality data into account. We
compared the performance (i.e., RMSE, MAE) of our GCRF
model with the state-of-the-art deep model and the linear
regression and ARIMA baselines on real-world 4G LTE data

collected over multiple operators and observed that our model
significantly outperforms these baselines. Our experiments
demonstrate that the GCRF model is computationally efficient
and highly interpretable, thus making it practically feasible.
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