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ABSTRACT
In today’s busy modern life, modeling and accurately predicting
fitness center equipment usage and availability is essential for im-
proving human fitness and well-being as it provides people the
flexibility to plan their schedule and exercise at their convenience.
In addition to its crucial role in ensuring a healthy and sustainable
future, adopting a data-driven approach for modeling and predict-
ing fitness center equipment usage is necessary for planning the
optimal square footage for developing a fitness center, and deter-
mining the kinds of equipment to purchase and install. In this paper,
we develop DeepFit, a deep learning based system that predicts fu-
ture fitness center equipment usage based on historical data. To
this end, we design a Long Short Term Memory (LSTM) based
sequence-to-sequence model that captures the dependencies in the
data. The sequence-to-sequence model comprises of an encoder
and a decoder, each of which separately is a deep Recurrent Neural
Network (RNN). The basic cell structure in the RNN architecture is
an LSTM cell.

We evaluate DeepFit on equipment usage data collected from
a university campus fitness center over a period of 1.5 years and
demonstrate that it is able to accurately predict future fitness center
equipment usage. We show that DeepFit outperforms the linear
regression and ARIMA baselines in terms of Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) providing 17% per-
formance improvement on average. We then present a discussion
on hyper-parameter tuning and selection in our model. Finally, we
investigate the benefits of augmenting the deep learning model in
DeepFit with features such as whether the school is in session and
month of the year and observe that the enhanced DeepFit system
obtains performance improvements of 35% and 32% over linear
regression and ARIMA, respectively. Our experiments show that
the trained DeepFitmodel requires limited computational resources
at test time, thus making it an attractive system for practical de-
ployment.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; •Computingmethodologies→Machine learning ap-
proaches.
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1 INTRODUCTION
According to the US department of Health and Human Services,
“Physical activity, along with proper nutrition, is beneficial to people of
all ages, backgrounds, and abilities. And it is important that everyone
gets active: over the last 20 years, there’s been a significant increase in
obesity in the United States" [2]. Given the importance of physical
activity and exercise and the long sedentary working hours of
modern life, fitness centers play a crucial role in promoting good
health and wellness [7]. Having access to fitness center equipment
that works with an individual’s schedule is essential for the person
to engage in physical activity and maintain a healthy lifestyle.

One of the main challenges in this regard is accurately predict-
ing future fitness center equipment usage based on prior data so
that a person can plan her visit to the fitness and wellness cen-
ter. By aiding planning and time management, such predictions
can reduce wait times at the fitness center and thus, encourage
more people to engage in physical activity and take better care of
their health. Additionally, these predictions are also key to resource
management—they can help determine the real estate needs for
setting up a new fitness center in a community and for determining
the types of new equipment to purchase. Despite its importance
in the context of smart cities and for maintaining a healthy and
sustainable future, this problem has received little attention till date
from the computing research community.

In this paper, our goal is to develop a system for accurately pre-
dicting fitness center equipment usage based on historical data.
We model the fitness center equipment usage prediction as a time
series forecasting problem, which means that both model-based
approaches such as Auto-Regressive Integrated Moving Average
(ARIMA) aswell asmachine learningmodels, in particular sequence-
to-sequencemodels, can be used for addressing this problem. Recent
research has demonstrated the usefulness and appropriateness of
adopting a sequence-to-sequence modeling approach for problems
that require mapping input sequences to output sequences (in-
cluding time-series data) as they elegantly capture the underlying
dependencies in the data [4, 6].

Therefore, we develop DeepFit, a Long Short Term Memory
(LSTM) based sequence-to-sequence neural network model that



MobiQuitous, November 12–14, 2019, Houston, TX, USA Adita Kulkarni, Anand Seetharam, Arti Ramesh

predicts usage of fitness center equipment using data collected from
a university campus recreational center. DeepFit comprises of two
components, an encoder and a decoder. The encoder takes the input
sequence (i.e., past equipment usage data) into consideration and
generates an encoded vector. The decoder then uses this encoded
vector to generate the future predictions (i.e., future equipment us-
age). Both the encoder and the decoder are designed as a standard
Recurrent Neural Network (RNN) with the inner cell structure in
each RNN being an LSTM cell.

To evaluate the efficacy of DeepFit, we collect fitness center
equipment usage data at multiple different times of a day for a
period of approximately 1.5 years from the recreational center at
our university. We collect data at three different times of a day (i.e.,
morning, afternoon and evening) for the four most popular classes
of gym equipment—Cardio, Free Weights, Strength Machines and
Synergy360.We compare the performance ofDeepFitwith the linear
regression and ARIMA baselines with respect to multiple perfor-
mance metrics such as Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE), and demonstrate that DeepFit significantly
outperforms these baselines (17% on average).

We also present qualitative results that visually demonstrate that
by taking entire input sequences into account for generating the
output,DeepFit is able to predict future equipment usage better than
the linear regression and ARIMA baselines. We then present a dis-
cussion on the choice of hyper-parameters such as sequence length,
number of stacked layers, number of hidden units in each layer and
learning rate. Finally, we investigate the benefits of augmenting
the deep learning model in DeepFit with features such as whether
the school is in session and month of the year and observe that the
enhanced DeepFit system obtains performance improvements of
35% and 32% over linear regression and ARIMA, respectively. Our
experimental results demonstrate that the trained DeepFit system
requires limited computational resources at test time, thus making
it practically useful.

The rest of paper is organized as follows.We provide an overview
of related work in Section 2 and then describe the data and the
problem studied in this paper in Section 3. We discuss DeepFit and
the LSTM based deep sequence-to-sequence prediction model in
Section 4. We present our evaluation results and conclude the paper
in Sections 5 and 6 respectively.

2 RELATEDWORK
In this section, we first describe previous work related to fitness
and healthcare, and then discuss machine learning applications in
smart cities and ubiquitous computing domain.

Human Activity Recognition (HAR) using wearable devices is
directly related to fitness monitoring. Deep learning applications in
HAR using wearable sensors have been presented in [10, 11, 13, 22,
27, 29]. For example, the authors explore deep, convolutional and
recurrent models for recognizing human activities such as walking,
running and exercise [11]. Similarly, a system called AROMA is
presented in [22], where the authors use CNNs for simple activity
recognition and LSTMs for complex activity recognition. In com-
parison, the authors in [10] combine multiple LSTM learners into
ensemble classifiers for activity recognition.

In recent years, deep learning applications in the healthcare
domain have also been proposed [3, 8, 14, 24, 25]. In [8], authors
propose multi-output deep architectures for multi-step forecasting
of blood glucose trajectories. Sideris et al. design a deep RNN based
model for measuring blood pressure continuously through pulse
oximeters [24], while Liu et al. design an end-to-end neural model
for automatic dietary assessment [17]. Similarly, Subspace Network
[25], an efficient deep modeling approach for non-linear multi-task
censored regression has been developed to model neurodegenera-
tive diseases. Disease diagnosis using context-aware hierarchical
reinforcement learning and cardiovascular risk prediction using
semi-supervised and multi-task LSTM has also been developed
in [14] and [3], respectively. Designing models and systems for
detecting social anxiety and stress has also received attention in
the computing domain. For example, the authors in [23] present a
weakly supervised learning framework for detecting social anxiety
and depression from long audio clips, while Lin et al. design a deep
neural network model in [16] to detect users’ psychological stress
from social media.

Additionally, machine learning approaches have also been ap-
plied to solve a variety of problems in the urban and ubiquitous
computing domain [5, 12, 15, 20, 21, 30]. Authors in [30] present a
deep multi-view spatial-temporal network to model taxi demand.
Hasan et al. propose an optimization approach to maximize trip
sharing that exploits clustering, shareability graphs and mixed in-
teger programming. In [5], authors propose ADAIN, a model for
urban air quality inference, which combines feedforward and re-
current neural networks. Authors in [20] introduce SpotGarbage,
an Android app which employs CNN to detect garbage. [15] adapts
three neural network architectures for energy disaggregation, while
[21] presents two approaches for forecasting gas consumption—
Generalized Additive Models and LSTM.

In contrast to prior work, in this paper, we design DeepFit, a
system to predict future fitness center equipment usage, a problem
that falls in the category of smart and ubiquitous computing, but
has not been investigated in previous research.

3 PROBLEM STATEMENT AND DATA
In this section, we provide an overview of the fitness center equip-
ment usage prediction problem and then describe the dataset that
we collect at our university to validate the performance of our
solution.

3.1 Problem Statement
In this paper, our goal is to leverage recent advancements in ma-
chine learning and computing research to improve the health and
wellness of our communities. To this end, we tackle the fitness
center equipment usage prediction problem, where the objective is
to accurately predict future equipment usage based on past data.
We cast this problem as a time series prediction problem, where
given an input sequence (i.e., x1, x2, ...., xn ), which corresponds to
the machine usage for the last N time steps, the goal is to generate
predictions (i.e., ŷ1, ŷ2, ...., ŷk ) for the machine usage for the next
K time steps.

Traditionally, time series prediction/forecasting problems have
been tackled using statistical and model-based approaches (e.g.,
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regression, ARIMA models) that primarily attempt to capture the
dependencies in the data using a combination of linear models.
While these model-based approaches provide valuable insights and
are useful when one has limited data and computational power at
her disposal, they often provide below par prediction performance
due to underlying complexities in real-world data. Therefore, in
this paper, we develop LSTM based sequence-to-sequence deep
learning models for the fitness center equipment usage prediction
problem and demonstrate empirically that they perform better than
linear regression and ARIMA models.

3.2 Data
We collect machine usage data from a university campus fitness
center for around 515 days (28 November 2017 to 27 April 2019).
We collect data for four machines—Cardio, Free Weights, Strength
Machines and Synergy360 for three time periods during the day
(i.e., morning, afternoon and evening). Data is collected between 6
am to 10.59 am for the morning session, 11.00 am to 3:59 pm for the
afternoon session and 4.00 pm to 8.59 pm for the evening session.
We record multiple values during each session and take an average
over them to get one reading in each session. The gym is closed
during holidays such as Christmas, Thanksgiving and Memorial
day. Hence, we do not record usage data during the holidays. Apart
from this, the data contains 9% missing values. We fill all these
missing values by taking an average of the five previous readings
for that particular day and session. We note that due to the data
collection procedure and sensor/meter installation by the physical
facilities department at the university, the time interval at which
data is collected is periodic and not uniform.

We next discuss the trends in data. Table 1 shows the average
percentage usage for the different types of equipment. We observe
that usage of recreational facilities is lower on weekends as com-
pared to weekdays, with Free Weights are Strength Machines being
used higher than Cardio and Synrgy360. Figure 1 shows the per-
centage of equipment usage for 80 time steps for all four machines.
We can see that usage varies over time, thus making the prediction
problem an interesting one. We also observe from the data that the
recreational facility at our university is generally overprovisioned,
which emphasizes the importance of making accurate predictions
such that they can be leveraged for optimal resource allocation.

Table 1: Average machine usage

Machine All days Weekdays Weekends
Cardio 19% 19% 18%

Free Weights 26% 27% 24%
Strength Machines 22% 23% 20%

Synrgy360 19% 20% 17%

Figure 2 shows the best times to visit the recreational center
based on the availability of machines with respect to time of day,
day of week and month of year. From Figure 2a, we observe that
usage for all machines is lowest in the morning, followed by the
afternoon and highest in the evenings. This is expected as college
students generally wake up late and have more classes scheduled
during the afternoons. From Figure 2b, we see that the day of the
week does not significantly impact the number of people using

the recreational facilities, though Sunday has the least number of
visitors. As expected, Figure 2c shows that months of June and July
have lowest usage as most students are not on campus during the
summer session. Similarly, May, August, December and January
also have lower usage because the school is in session only for some
days during these months.

4 MODEL
In this section, we describe DeepFit, a system that predicts future
fitness center equipment usage based on historical data. Figure 3
shows the different components of DeepFit. As mentioned earlier,
we collect usage data for four different equipment from a university
fitness center. After data is collected, DeepFit pre-processes it to
compute the usage statistics based on the different times of the day
(i.e., morning, afternoon and evening). This data pre-processing
component removes noisy data and imputes missing data by tak-
ing the average of the five previous readings for that particular
day and time. This processed data stream is then fed to an LSTM-
based sequence-to-sequence deep learning prediction component
that uses it to generate the desired predictions. Before describing
our model, we discuss the appropriateness of using sequence-to-
sequence and deep learning models for the prediction task at hand.

  

Data
Collection

Data
Preprocessing

LSTM

Raw Data Processed
Data

Predictions

Predictions

…...

Figure 3: System Architecture

4.1 Why Sequence-to-Sequence Deep Models?
Model-based and statistical approaches usually design simple mod-
els that explain the available data and predict the future based
on these models. While these hand-crafted models are easy to in-
terpret, they often fail to capture the underlying dependencies in
real-world data leading to poor prediction performance. Model-
based approaches also lack the ability to learn from vast amounts of
prior data. In comparison, the primary objective of deep sequence-
to-sequence models is to map entire input sequences to output se-
quences and are ideally suited for time-series forecasting problems,
similar to the one studied here. By leveraging the entire training
data, during the training phase, deep sequence-to-sequence models
learn the underlying correlations in the data and the complex con-
nections between the input and output variables as the encoded sig-
nal passes the different layers of the neural network. These trained
models then use their learned knowledge to generate predictions at
test time by taking the current input sequence into consideration,
thus providing superior performance. Deep sequence-to-sequence
models have been applied to a wide variety of problems ranging
from computer vision to natural language processing [26, 28]) as
well as for time series predictions [18, 19].
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Figure 1: Trends in datasets
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4.2 RNN Encoder-Decoder Model
The prediction component of DeepFit comprises of an encoder-
decoder based sequence-to-sequence deep model as shown in Fig-
ure 4. The model consists of two components—an encoder and a
decoder, each of which is an RNN. An RNN consists of a network of
neural nodes that are organized in layers, with there being directed
connections from one layer to the next. At the highest level, the
encoder accepts an input sequence x1, x2, ...., xn , which corresponds
to the equipment usage in the last n time steps and generates a
hidden encoded vector C which encapsulates information for the
input sequence. This encoded vector is given as an input to the
decoder which generates ŷ1, ŷ2, ...., ŷk , the predicted equipment
usage for the next k time steps.

Internally, at each time step t , an RNN consists of a hidden state
ht that gets updated based on the input xt and the previous hidden
state (i.e., ht−1) using some non-linear function f . ht serves as
memory and after the entire input sequence is read, the hidden
state is the summaryC capturing the information of the entire input
sequence. This summary C is then used by the decoder to generate
the output sequence by predicting the next value yt given the
hidden state. We use ReLU activation function after each decoder
output to prevent prediction of negative equipment usage values.

In the standard RNN architecture, the neural nodes are usually
composed of basic activation functions such as tanh and sigmoid.
During the training phase, the weights are learned by the back-
propagation algorithm that propagates errors through the network.

However, the use of these basic activation functions can cause
RNNs to suffer from the vanishing/exploding gradient problem that
causes the gradient to have either infinitesimally low or high values,
respectively. This prevents RNN from being able to learn long-term
dependencies based on the data. To overcome this problem, we
use LSTM cells as the basic cell in both encoder and decoder to
capture and store relevant long-term temporal dependencies in the
data. LSTM cells circumvent the well-known vanishing/exploding
gradient by incorporating the ability to ‘forget’.

Figure 5 shows the architecture of an LSTM cell. An LSTM cell
consists of three gates— input gate, output gate, and forget gate.
The input gate decides which information is relevant in the current
step, while the output gate determines what the next hidden state
is. The forget gate decides which information is relevant from the
previous steps and helps to handle long-term dependencies. The
gates are represented by the following equations.

it = σ (Wxixt +Whiht−1 + bi )

ot = σ (Wxoxt +Whoht−1 + bo )

ft = σ (Wxf xt +Whf ht−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1 + bc )

ht = ot ⊙ tanh(ct ) (1)

where, xt is the input vector to the LSTM unit, it , ot and ft are
the input gate’s activation vector, output gate’s activation vector
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and forget gate’s activation vector respectively. ht is the hidden
state vector, and ct is the cell state vector.W are the weight matrices
and b are bias vector parameters that are learned during training.
σ and denotes application of the logistic sigmoid function and
hyperbolic tangent function, respectively. ⊙ denotes element-wise
multiplication. We note that the nodes shown in Figure 4 do not
correspond to LSTM cells in the architecture. They denote the
abstract hidden state as the encoded signal passes through the
network. We refer the reader to Goodfellow et al. for more details
[9].

4.3 Training and Implementation Details
We split the data into two parts— 75% for training and 25% for
testing and use TensorFlow1 for implementing the deep learning
1https://www.tensorflow.org/

model. We use equipment usage data for the past 2 weeks to predict
1 week into the future. We train our models on Spiedie, a high
computing cluster available at our university. The configuration
used on the cluster for all experiments is 4 cores and 8 GB RAM.

At training time, the encoder and decoder are trained jointly
using the backpropagation algorithm. We adopt unguided training
as the training methodology. In unguided training, the decoder
uses the previous predicted output value as an input to the next
step of the decoder. One of main benefits of unguided training is
that it enables a better exploration of the state space, which results
in superior prediction performance at test time. At both training
and test times, for a given equipment usage value, we use a sliding
window of one step to obtain the input sequences. This ensures that
we achieve themaximumoverlap of sequences used.We incorporate
L2 regularization in our model to minimize overfitting.

We experiment extensively with the hyper-parameters such as
number of stacked layers, numbers of hidden units in each layer,
the length of the input and output sequences and the learning rate.
Based on our experiments, we observe that overall 1 layer with
10 hidden units generalizes best across different types of fitness
equipment and provides overall best performance.We use a learning
rate of 0.01 and train the model for 500 epochs. We note that the
optimal set of parameters is dependent strongly on the problem
being investigated and the dataset in consideration. We present
a discussion on hyper-parameter initialization and their effect on
performance and our rationale for choosing this specific parameter
configuration for our experiments in Section 5.4.

5 EXPERIMENTAL RESULTS
In this section, we demonstrate the superior prediction performance
of DeepFit by comparing it with two baseline approaches, linear re-
gression and ARIMA. The code for our model and the pre-processed
data is available in [1]

(1) Linear Regression - It is a statistical model that produces
the best fit straight line based on the data.

(2) ARIMA (p, d, q) - Auto-Regressive Integrated Moving Av-
erage, popularly known as ARIMA is a statistical model that
comprises of three terms. The first term is the Autoregressive
term (AR), the second is the differencing term (I) and the
third is the moving average term (MA). The parameters for
AR, I and MA terms are specified by p, d and q, respectively.
p denotes the number of the past samples used for predicting
future values, d denotes the number of times the differencing
operation is performed to make a series stationary, while
q represents the number of error terms used to predict the
future values. At any time t , the equation of ARIMA used
for prediction is given by,

(1 −
p∑
i=1

ϕiL
i ) (1 − L)dxt = (1 −

q∑
i=1

θiL
i )et (2)

where xt corresponds to the equipment usage values, ϕi
is the auto-regressive parameter, θi is the moving average
parameter, et are the error terms and L is the lag term.
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Figure 6: Free Weights: RMSE
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Figure 7: Free Weights: MAE

In our experiments, we use the Auto-ARIMA toolkit2 in python
that picks the optimal values for p, d , and q after searching through
different combinations of the parameters. Linear regression and
ARIMA do not require training as they are statistical models. Equip-
ment usage for the past 2 weeks is used to predict 1 week into the
future.

The main metrics used in our evaluation are root mean squared
error (RMSE) and mean absolute error (MAE) which are given by
Equations 3 and 4, respectively.

RMSEj =

√∑h
i=1
(
ŷi j − yi j

)2
h

(3)

MAEj =

∑h
i=1 |ŷi j − yi j |

h
(4)

where yi j is the ith test sample for jth timestep, ŷi j is the pre-
dicted value of yi j , and h is the total number of test samples.

5.1 RMSE
In this subsection, we discuss the RMSE performance of DeepFit
in comparison to the baselines. Figure 6 shows the results for Free
Weights for all three sessions (i.e., morning, afternoon and evening).
We observe from the figure that DeepFit significantly outperforms
2https://pypi.org/project/pyramid-arima/

the baselines for each session. We also observe that DeepFit is able
to make better predictions into the future as its RMSE values only
increase gradually. In contrast, the prediction performance of linear
regression and ARIMA become considerably worse as they predict
further into the future. We attribute the superior performance of
DeepFit to its sequence-to-sequence modeling aspect that takes the
entire input sequence into account to predict the output. Table 2
shows the RMSE values calculated as an average over predictions
for 7 time steps for the four machines. We see that DeepFit outper-
forms the baselines for all machines and all three sessions. DeepFit
provides an average performance improvement of 16% over ARIMA
and 18% over linear regression.

5.2 MAE
In this subsection, we discuss the MAE results. Figure 7 shows
the results for Free Weights for the three sessions. We observe
that DeepFit significantly outperforms the baselines with respect to
MAE as well. We also observe that the trends for MAE are similar
to RMSE. Table 3 shows the average MAE over predictions for 7
time steps for all machines. Once again, we observe that DeepFit
achieves better performance than the baselines. DeepFit shows a
performance improvement of 14% over ARIMA and 20% over linear
regression on average.
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(b) LSTM vs Linear: Time Step 7
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Figure 8: Qualitative Results: Free Weights(Morning Session)

Table 2: RMSE

Machines Session LSTM ARIMA LR
Morning 3.8 4.3 4.4

Cardio Afternoon 5.55 7.13 6.85
Evening 7.86 9.12 9.55

Free Morning 4.67 6.17 6.4
Weights Afternoon 7.91 9.59 10.26

Evening 11.18 13.94 14.23
Strength Morning 1.82 2 2.1
Machines Afternoon 3.81 5.22 4.48

Evening 3.71 4.14 4.54
Morning 2.44 2.59 2.85

Synrgy360 Afternoon 3.62 4.17 4.52
Evening 4.07 4.67 4.8

5.3 Qualitative Results
In this subsection, we present qualitative results to visually demon-
strate the superior prediction performance of DeepFit. Figures 8a
and 8b show the predictions for LSTM and linear regression for
Free Weights for the morning session for time step 1 and time step
7, respectively. We observe that linear regression shows poor pre-
diction performance than LSTM. In comparison to linear regression
that predicts the future based on the trend obtained from the previ-
ous values, LSTM learns the mapping between input and output

Table 3: MAE

Machines Session LSTM ARIMA LR
Morning 3.01 3.42 3.48

Cardio Afternoon 4.17 5.1 5.29
Evening 5.25 6.05 6.65

Free Morning 3.58 4.59 4.79
Weights Afternoon 6.38 7.21 7.99

Evening 8.95 10.87 11.24
Strength Morning 1.28 1.41 1.52
Machines Afternoon 2.87 3.29 3.42

Evening 2.76 3.18 3.55
Morning 1.72 1.89 2.13

Synrgy360 Afternoon 2.79 3.19 3.57
Evening 2.96 3.54 3.66

sequences, which enables it to obtain better performance. We also
see from Figure 8b that the performance of linear regression be-
comes worse by time step 7, but LSTM still manages to capture the
underlying structure in data. Figures 8c and 8d show predictions
for LSTM and ARIMA for Free Weights for the morning session for
time step 1 and time step 7, respectively. Similar to linear regression,
we observe that ARIMA’s prediction is worse than LSTM and its
performance deteriorates significantly by time step 7.
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5.4 Discussion on Hyper-parameters
In this subsection, we investigate the impact of the different hyper-
parameters on the performance of DeepFit. We vary four hyper-
parameters — number of stacked layers, number of hidden units,
input sequence length and learning rate, and discuss the rationale
behind choosing the default parameters. Figures 9 and 10 show
RMSE results for DeepFit for Free Weights for the afternoon and
evening sessions respectively. We observe from Figures 9a and 9b
that the configuration with 1 stacked layer and a learning rate of
0.01 gives the best performance. Similarly, we see from Figures 10a
and 10b that training the model with 10 hidden units and input
sequence length of 14 gives the highest performance scores.

Table 4 shows average improvement of DeepFit over the base-
lines with respect to RMSE calculated over all machines and all
sessions. We observe that as the number of stacked layers increase,
the performance of DeepFit decreases. Similarly, performance of
DeepFit increases as we increase the number of hidden units to 10.
However, increasing the number of hidden units beyond 10 deteri-
orates its performance. We hypothesize the limited variation in the
data as the primary reason as to why a simple model with 1 layer
and 10 units gives the best performance. We also train the model
by varying the sequence length from 2 to 4 weeks (i.e., sequence
length 14, 21, and 28). We observe from the table that giving more
than two weeks as input does not help the model learn additional
information. Similarly, we find that a learning rate of 0.01 gives
the best performance and increasing or decreasing the learning
rate deteriorates the overall performance. In fact a learning rate of
0.0001 provides worse performance than the baselines. Our analysis
throws light on the importance of choosing hyper-parameters ap-
propriately and provides the setup for performing hyper-parameter
tuning for other similar datasets or problems.

Table 4: Hyper-parameters

Hyper- Values Average improvement over
parameters ARIMA LR
Stacked 1 15.62% 18.14%
Layers 2 12.62% 15.25%

3 9.84% 12.35%
Hidden 5 15.52% 17.98%
Units 10 15.62% 18.14%

15 10.93% 13.56%
Sequence 14 15.62% 18.14%
Length 21 6.55% 7.56%

28 9.86% 16.26%
Learning 0.1 13.33% 15.83%
Rate 0.01 15.62% 18.14%

0.001 -6.25% -3.03%

5.5 Discussion on adding features
In our experiments so far, the LSTM-based sequence-to-sequence
deep learning model used in DeepFit only considers previous equip-
ment usage data to predict the future. In this subsection, we describe
how we augment DeepFit by including additional features in the
base LSTM model and investigate the performance benefits of this
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Figure 9: Varying hyper-parameters: Free Weights (After-
noon Session)

enhanced model. To this end, we identify two features that can be
incorporated in the base LSTM model, namely, i) whether school
is in session (Academic Term) and ii) month of the year (Month).
Recall from Figure 2c that equipment usage changes significantly
based on the month, whether the school is in session, and for how
long the school is in session during a particular month.

We study performance gains of including each of these features
individually as well as jointly in the enhanced model. While at a
cursory glance, it might appear that including both features will be
more useful, this may not be the case depending on the underlying
correlation between the features and the complexity in the data. We
obtain the information regarding whether the school is in session
from the university academic calendar. The feature Academic Term
takes values 1 or 0, where 1 denotes that the school is in session.
The feature Month takes values from 1 to 12, where 1 denotes the
month of January. To evaluate the performance of the enhanced
model, we require train and test data spanning all the months.
Therefore, instead of using the first 75% data at training time and
the remaining 25% at test time, we generate a new training dataset
by randomly sampling 75% sequences from the original dataset.
The remaining 25% sequences from the original dataset form the
new test dataset. This process ensures that we have representative
train and test samples spanning all the months.

Table 5 shows the percentage improvement, obtained as an av-
erage over 7 time steps for the enhanced LSTM model over the
base LSTM model (i.e., without additional features) when we add
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Table 5: Features: Average improvement of EnhancedDeepFit
over base DeepFit

Machines Session Feature Feature Feature
Academic
Term

Month
Academic

Term & Month
Morning 3.04% 7.75% 10.74%

Cardio Afternoon 19.16% 9.39% 3.63%
Evening 3.01% 4.51% 17.24%

Free Morning 10.34% 11.73% 9.3%
Weights Afternoon 4.19% 7.47% 3%

Evening 2.53% 7.92% 13.02%
Strength Morning 11.04% 5.75% 9.45%
Machines Afternoon 6.86% 11.4% 3.07%

Evening 6.02% 5.82% 15.19%
Morning 2.21% 5.5% 10.75%

Synrgy360 Afternoon 2.23% 1.36% 0.05%
Evening 15.39% 12.41% 15.35%

individual features Academic Term and Month, and when we add
the features together. We observe from the table that depending on
the equipment and the session, one version of the enhanced model
can outperform the other and it is difficult to pick a clear winner.
Overall, from the table, we observe that adding Academic Term

Table 6: Features: Average improvement of EnhancedDeepFit
over ARIMA

Machines Session Feature Feature Feature
Academic
Term

Month
Academic

Term & Month
Morning 32.76% 36.03% 38.1%

Cardio Afternoon 39.75% 32.47% 28.18%
Evening 35.49% 36.49% 44.95%

Free Morning 34% 35.03% 33.23%
Weights Afternoon 28.14% 30.6% 27.25%

Evening 28.18% 32.15% 35.91%
Strength Morning 36.28% 32.49% 35.14%
Machines Afternoon 36.46% 39.55% 33.87%

Evening 19% 18.83% 26.91%
Morning 24.79% 27.31% 31.35%

Synrgy360 Afternoon 35.79% 35.22% 34.36%
Evening 31.06% 28.64% 31.04%

improves performance by up to 19%, adding Month improves per-
formance up to 12%, and adding them together shows performance
improvement of up to 17%.

Table 6 shows the average percentage improvement of the en-
hanced LSTMmodel over ARIMA.We observe that addingAcademic
Term and Month individually improves performance between 19%
and 40%, whereas adding both features together improves perfor-
mance between 27% to 45%. Additionally, comparing with linear
regression, we observe that adding the features individually im-
proves performance by 35% on average, while adding them together
shows 36% improvement on average. Our results thus demonstrate
that augmenting the LSTM model with these additional features (if
available) can significantly improve the prediction performance.

6 CONCLUSION
In this paper, we investigated fitness center equipment usage predic-
tion problem using data collected from a university campus fitness
center. We designed DeepFit, an LSTM based encoder-decoder re-
current neural network model that accurately models and predicts
equipment usage based on historical data. Our experimental evalu-
ation shows that by successfully encoding and capturing dependen-
cies in the underlying equipment usage data, DeepFit achieves supe-
rior prediction performance (17% improvement on average in RMSE
and MAE) for all kinds of fitness equipment in comparison to the
linear regression and ARIMA baselines. We also demonstrated that
augmenting the base LSTM model with features such as whether
the school is in session and the month of the year improves the
performance of DeepFit over linear regression and ARIMA by 35%
and 32%, respectively. Additionally, DeepFit requires limited data
and computational resources at test time making it a practically
attractive and viable system.
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