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ABSTRACT

Cities have limited resources that must be used efficiently to main-

tain their smooth operation. To facilitate efficient resource alloca-

tion and management in cities, in this paper, we study one such

important problem: how long does it take to resolve non-emergency

311 service requests? We present NYCER, a Non-emergency Re-

sponse prediction system based on a recently developed struc-

tured regression model, sparse Gaussian conditional random fields

(GCRFs), that successfully captures the dependencies between his-

torical and future response times. Through extensive experimenta-

tion on 311 service requests in New York City (NYC) over a three

and a half year period between Jan 2015 to June 2018, we demon-

strate that our trained system is able to accurately predict future

response times one week in advance using just the previous two

weeks data at test time. NYCER achieves superior prediction per-

formance across all agencies, complaint types, and locations, when

compared to a linear regression baseline (up to a factor of 2X). The

trained NYCER system requires low computational resources and

data at test time, thus making it an attractive system that can be

readily deployed in practice.
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1 INTRODUCTION

Non-emergency helpline numbers have gained prominence in the

last two decades and have been widely adopted by major cities in

various countries around the world [8]. In both USA and Canada,

this special non-emergency telephone number is 311. New York City

(NYC) implements one of the largest 311 operations in USA, which

began in 2003. To enable the government to run these services

efficiently, all data related to 311 service requests from 2010 have

been made publicly available and is updated daily [1, 6].

In this paper, we design a non-emergency response time predic-

tion system, NYCER, that adopts a data-driven approach to predict

the service request response times on a weekly basis (i.e., predicting
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the response times at the beginning of a week for the entire week).

Predicting the response times for requests ahead of time is bene-

ficial for performing efficient resource allocation (e.g., personnel)

to address different types of requested services. Higher than usual

predicted future response times can also be utilized by agencies

to determine the number of additional temporary contractors that

need to be hired for the coming week so as to keep the actual

response times within a desired threshold.

Response times depend on a number of factors such as demand,

agency the complaint is assigned to, type of complaint, and the

location of the complaint. NYCER takes these factors in account

and leverages past 311 data to make decisions related to future

response times. NYCER consists of two stages: i) an initial data

pre-processing stage that removes noisy data and extracts relevant

data based on start and close date of the complaint, the agency, the

complaint type, and the location, and ii) the core second stage that

consists of the proposed prediction models that take this filtered

input and produce the desired output (i.e., predicted response times).

We create separate data sequences and develop models for each

agency, complaint type, and location, as then these models can be

executed independently by the responsible agencies, county/city

officials to estimate and plan for their resource needs.

Specifically, our main contributions are as follows:

(1) We design NYCER, a system that leverages and adapts sparse

Gaussian Conditional Random Fields (GCRFs) to predict fu-

ture response times based on historical data. We develop

two GCRF models: i) GCRF Response, which uses past re-

sponse times to predict future response, and ii) GCRF De-

mand, which uses past response and demand to predict future

response times. The proposed GCRFmodels are computation-

ally efficient and consider only minimal past information

(past 2 weeks) at test time. We demonstrate that the par-

simonious GCRF Response model that only relies on past

response times to predict future response times provides per-

formance similar to and in some cases outperforms a more

complex GCRF Demand model that considers both past de-

mands and response times. Furthermore, the sparse nature of

our models aids in learning only those dependencies among

the observed features and target variables that are helpful

in the prediction, thus ensuring that the model has the ideal

and required amount of complexity.

(2) We conduct extensive experiments on NYC 311 service re-

quest data from January 2015 to June 2018 to demonstrate

the efficacy of our models. We train separate models for each

of the different factors that affect response times: i) agency,

ii) complaint type, and iii) location. This helps us reduce the

uncertainties in prediction imposed by high variance in the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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data. This separation also ensures that the models can be ex-

ecuted independently, thus aiding responsible agencies and

city/county officials to make important resource allocation

decisions based on their respective historical response times.

Our experiments demonstrate that NYCER significantly out-

performs a baseline linear regression model both in terms

of Root Mean Squared Error (RMSE) and Relative Error (RE)

across all agencies, complaint types, and locations, yielding

up to a factor of 2X improvement in prediction performance.

(3) We also conduct experiments by training on data sequences

of varying lengths of 1, 2, 4, 6, and 8 weeks and find that

training on 2-week length sequences achieves a good predic-

tion performance at test time, comparable to or better than

training on longer data sequences. Consequently, our model

is faster to train and at test time only requires 2 weeks of

past data to predict future response times for 1 week.

Our results and analysis indicate that the trained NYCER requires

limited data and computational resources at test time, thus making

it a practically useful system.

2 RELATEDWORK

In this section, we provide an overview of related work. We first

describe prior work related to 311 service request data and then dis-

cuss prior work related to the application of machine learning and

statistical models to solve problems in the pervasive and ubiquitous

computing domain.

Most prior work related to non-emergency services focus pri-

marily on noise-related complaints [3, 13, 26]. Zheng et al. [26]

develop a 3-dimentional tensor to detect noise using a combination

of 311 service requests and social media data. In [13], the authors

design a mobile collaborative social application for urban noise

monitoring, while a system for monitoring, analyzing and mitigat-

ing urban noise pollution is proposed in [3]. Wang et al. [11] and

Zha et al. [25] analyze 311 requests and use simple gradient boost-

ing regression and random forest models to predict the number of

311 requests, respectively. The authors in [20] use 311 service re-

quests to understand local urban context. In contrast to prior work

that focus primarily on developing systems for data analysis and

clustering, our goal in this paper is to design a prediction system

using GCRFs [23] to predict future response times for 311 service

requests.

In recent years, a myriad of machine learning techniques have

been applied in various urban and ubiquitous computing contexts

toward creating smart citites and societies [2, 10, 14, 17, 19, 21]. In

[4, 21] the authors design spatial analysis and auto-regressive mod-

els to detect high-risk crime regions and to reliably forecast crime

trends, and to predict pedestrian foot traffic in urban areas, respec-

tively. Ghosh et al. [5] develop a mixed integer linear programming

formulation to enable dynamic repositioning of bike systems in

cities. Kang et al. [9] and Mittal et al. [14] design deep learning

models for prediction of crime occurrence from multi-modal data

and spotting garbage from images, respectively. Papangelis et al.

[16] and Yabe et al. [24] model mobility and traffic flow aiding in

better utilization of city resources and an easy commute.

Our proposed system falls under this broad umbrella of designing

machine learning systems for ubiquitous and smart computing.

Our work primarily differs from prior work in that it leverages

sparse GCRFs, a recently proposed and state-of-the-art structured

prediction model particularly suited for regression analysis. Further,

we design models to predict future response time for 311 service

requests, a problem that has not been addressed in previous research.

We also evaluate the efficacy of our models and relationship among

different spatio-temporal factors affecting response times through

extensive experimentation.

3 DATA & PROBLEM STATEMENT

3.1 Data

We use the data collected and distributed by NYC open data [1], a

site that provides 311 complaints since 2010, updated daily. This

data contains 17, 945, 594 rows, and 41 different attributes provid-

ing extensive information associated with each complaint. For the

purposes of our study, we select the following attributes to work

with:

(1) Created Date - Specifies the date and time the complaint was

created.

(2) Closed Date - Specifies the date and time the complaint was

closed.

(3) Agency - Specifies the responding city government agency.

(4) Complaint Type - Identifies the topic of the complaint.

(5) Location - Specifies the borough of the complaint.
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(a) Median response time per day.

This line was smoothed, in or-

der to better visualize the yearly

trends.
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(b) Response time from January

1st 2015 to January 21st 2015. Re-

sponse time dips on weekends,

and peaks on week days.

Figure 1: Response time across years and weeks

Response times are calculated by subtracting Created Date from
Closed Date. Figure 1a shows the median response time per day,

across all years of data. The data has been smoothed, in order to

better visualize the long term trend. Figure 1b is a zoomed in view of

the actual data, across a 3 week period. Note that there is a weekly

trend, where median response time dips during weekends and peaks

during week days. While long term seasonality in the data exists, in

this work, we are particularly interested in learning the short-term

weekly structure. Figure 2a identifies a recurring pattern across

weeks, confirming the pattern we see in Figure 1b. This temporal

structure of peaks and dips present in median response time is what

we want our model to capture and predict.

Figures 2b, 2c, and 2d present the average median response times

for each agency, complaint type, and location, respectively. These

agencies, complaint types, and locations are sorted on the total

number of complaints received by them. These figures illustrate

that the median response time per day varies significantly across

different agencies, complaint types, and locations. Tables 1a, 1b,
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Figure 2: Average median response time based on day of week, agency, complaint type, and location

Agency Abbreviation Complaints Addressed Percentage of

total complaints

New York Police Department NYPD Noise, illegal parking, drug activity, ... 29.7%

Housing Preservation and Development HPD Heat/hot water, plumbing, electric, ... 26.2%

Department of Transportation DOT Broken parking meter, highway condition, ... 12.6%

Department of Sanitation DSNY Overflowing trash, collection truck noise, ... 9.4%

Department of Environmental Protection DEP Air quality, industrial waste, ... 8.3%

Department of Buildings DOB Plumbing, boilers, damaged tree, ... 3.8%

Department of Parks and Recreation DPR Sidewalk damage, dead tree, park rule violations, ... 3%

Department of Health and Mental Hygiene DOHMH Smoking, rodents, mosquitoes, ... 2%

(a) Agency Information

Complaint type Abbreviation Description Percentage of

total complaints

Heat/Hot Water Heat Heat and/or hot water does not work 10.1%

Noise - Residential Noise(r) Loud neighbors, parties 9.7%

Illegal Parking Park Blocking vehicle, traffic, sidewalk, ... 5.5%

Blocked Driveway Driveway Blocking someones driveway 5.3%

Street Condition Street Various types of street damage 4.6%

Unsanitary Condition Unsanitary Sewage, mold, bugs, ... 3.5%

Water System Water No water, fire hydrant issues, ... 3.1%

Street Light Condition Light Street light dead or damaged 3%

Noise - Street/Sidewalk Noise(s) Loud talking or music 2.7%

Paint/Plaster Paint Peeling paint from walls 2.7%

(b) Complaint Type information

Location Percentage of

total complaints

Brooklyn 31.4%

Queens 23.8%

Manhattan 21%

Bronx 18.8%

Staten Island 5%

(c) Location Information

Table 1: Description of different agencies, complaint types, and locations in 311 service requests.

and 1c give a description of the top 8 agencies, 10 complaint types,

and all locations in the data and give the percentage of complaints

in each of them. The percentage of total complaints is calculated as

the number of complaints for that agency, complaint, or location,

divided by the number of complaints, with a valid closed date and

positive response time.

3.2 Problem Statement

Implementing an effective non-emergency response system in a

large city such as New York City (NYC) is a challenging endeavor,

due to the sheer volume of complaints and uncertainty associated

with how, when, and where people can lodge a complaint. Allo-

cating sufficient resources ahead of time is crucial in improving

response times of different types of complaints. A system that pre-

dicts future response times can thus be beneficial in understanding

where resources can be better allocated. Recognizing the short-term

trends in median response time, along with variation in average

median response time based on factors such as agency, complaint

type, and location, we observe that response time has an underlying

structure that can be captured in a predictive model. In this work,
we develop a predictive modeling system using a recently developed
structured regression graphical model, sparse GCRFs to predict future
median response time based on past median response time.

4 NYCER: A NON-EMERGENCY RESPONSE

PREDICTION SYSTEM

In this section, we provide an overview of our non-emergency re-

sponse prediction system, NYCER. Figure 3 shows the different

components of our system. NYCER takes 311 service request data
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as input and produces predicted response times for the future as

output. NYCER comprises of two main components: i) the data

pre-processing component, which pre-processes the 311 service

request data with respect to a number of factors such as agency

and complaint type to produce processed data, and ii) the pre-

diction component consisting of the GCRF models that takes the

pre-processed data to generate the desired predictions. Figures 4

and 5 illustrates the data pre-processing and the model components

in more detail, respectively. We explain these components in the

following sections.

Figure 3: NYCER Architecture

Figure 4: NYCER Architecture of Data Pre-Processing Com-

ponent. Raw data is filtered, and cloned to 3 different

datasets, one each for agency, complaint type, and location.

Figure 5: NYCER Architecture of GCRF Models Unit. For

each time series within each dataset, we produce training

and testing samples, which a GCRF model will use to learn

its parameters, and generate predictions respectively.

4.1 Data Pre-processing

In our models and analysis, we consider response data recorded

between January 2015 to June 2018. We consider the day of the

service request to be the day listed in Created Date. Complaints

with no closed date make up 3.2% of the requests after 2015 and

are filtered out. The dataset includes 261 different possible com-

plaint types and 29 different possible agencies after 2015. Upon

performing a closer analysis, we find that a majority of complaints

fall under a smaller number of complaint types, and get a response

from a smaller number of agencies. The top 8 agencies account

for 93.8% of the data after 2015, while the top 32 complaint types

account for 82.4%. In this study, we only consider 31 out of 32 of the

most common complaint types after 2015, and the 8 most common

responding agencies. We do not consider the 17th most popular

complaint type after 2015—Request Large Bulky Item Collection, be-
cause this is a relatively new complaint, with its first request on

August 29th, 2017. Since we do not have data for this complaint

type for the years 2015 and 2016, we exclude it from our analysis.

After filtering out requests with empty Closed Date, unspecified
boroughs, and service requests before 2015, we find that the 8 most

popular agencies and 31 complaint types, make up 80.8% of the

filtered data.

We filter out 311 service requests based on the following criteria:

(1) Each request must have a valid Created Date and Closed Date.
(2) Each request must get a response from one of the top 8

agencies.
(3) Each request must have one of the top 32 complaint types,

excluding Request Large Bulky Item Collection.
(4) Each request must have one of the 5 locations of NYC speci-

fied.

(5) Each request must be from 2015 or later.

(6) Subtracting the Created Date from the Closed Date must

produce a positive value.

After this filtering, we are left with 6, 405, 589 calls. Next, we

produce 3 different time series datasets, all consisting of the same

set of data points. Each of these datasets aggregate the number of

service requests per day, and take the median of those requests’

response times per day. The different datasets are created based on

the responding agency, the complaint type, and the location of the

service request. We create one time series with median response

times per day and another with median demand per day for each

agency, complaint type, and location. Thus, our agency dataset

has 16 time series (8 agencies, 2 for each agency), complaint type

dataset has 62 times series (31 complaint types, 2 for each complaint

type), and location dataset has 10 time series (5 locations, 2 for each

location). Creating these seperate time series not only decreases

the variance, when compared to the median response times of the

entire data, but also allows different NYC responding agencies to

run the model only on data applicable to them.

4.2 GCRF Prediction Model

When modeling short-term response times, one must consider how

to capture dependencies between the historical and predicted re-

sponse times, and how these dependencies can be used to improve

prediction performance. Figures 1b and 2a show a repeated pat-

tern in the data, where response time dips during the weekend,
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and peaks during the week. This clearly shows that response time

itself is not independent and identically distributed, and that its

structure must be incorporated in our model. This inspired us to

consider a probabilistic graphical modeling approach, as graphs

can be constructed to represent this structure in the data.

The generative approach of explicitly encoding all dependen-

cies among the inputs in the graphical model often times leads to

overfitting and poor prediction performance as the performance

hinges on effectively capturing these dependencies. Conditional

Random Fields (CRFs) [12] belong to the discriminative class of

models, which model the output variables given the input features

and do not explicitly encode the dependencies among the inputs.

Instead, the dependencies that CRFs model are edges among the

output variables in the graphical model, and edges between the

input and output variables. This is helpful, as it avoids making an

often incorrect independence assumption that models such as Naïve

Bayes [15] encode, or incorrect dependence assumptions among

features such as Gaussian Markov Random Fields [18].

Since capturing the precise dependence among input features

is a difficult and time-consuming task, in our problem, instead of

modeling the joint distribution of both observed features (historical

response times) and target variables (future response times), we

only model the posterior distribution of the future response times

given the historical response times. As mentioned above, CRFs are a

great choice for this problem as they accomplish what we need with

minimal assumptions. Other well studied time series approaches

also exist, such as LSTM (long short-term memory) [7]. We chose

GCRF instead of LSTM, as GCRFs learn dependencies that can be

interpreted easily as opposed to LSTMs, where the dependencies

are harder to interpret. We choose a recent version of CRF, extended

to structured regression, sparse GCRFs [23], for predicting future

response times. In the following section, we give an overview of

GCRFs and show how to adapt them for response prediction.

4.2.1 Gaussian Conditional Random Fields (GCRFs). The poste-
rior distribution modeled by GCRFs is as follows [23]:

P (y | x ;Λ,Θ) =
1

Z (x )
exp (−yTΛy − 2xTΘy) (1)

where x = [x1,x2, ...,xn] represent median historical response

times per day, where n is the number of days in the past and

y = [y1,y2, ...,ym] represent median predicted response times per

day, where m indicates the number of days in the future. Θ and

Λ are parameters/regression coefficients of the GCRF model. Θ is

an nxm matrix, containing the edges between x and y, while Λ is

themxm inverse covariance matrix, containing the edges amongst

the y’s. The CRF is a Gaussian distribution with mean −Λ−1ΘT x
and variance Λ−1, N (−Λ−1ΘT x ,Λ−1). Z (x ) in Equation 1 is the

partition function, which ensures that the posterior is integrated to

1. This is necessary, because edges in the graph can be represented

by any real number.

4.2.2 GCRF Training. At training time, we find the most likely

estimates of the parameters Λ and Θ given the training data. We

perform maximum likelihood estimation of the parameters by find-

ing the parameter values that maximize the probability of the data

given the parameters (also known as the likelihood function), as

shown below.

max

Λ,Θ
P (y | x ;Λ,Θ) (2)

This is equivalent to minimizing the negative log likelihood,

given by:

min

Λ,Θ
−loд(P (y | x ;Λ,Θ)) (3)

Regularization is a way to avoid overfitting by penalizing high-

valued regression coefficients. In order to make sure that our models

generalize better, we add a regularization term to the maximum

likelihood estimate equations above. L1 and L2 are two popularly

used regularization norms that add a penalty term corresponding to

the absolute value of the magnitude of the coefficients and square

of the magnitude of the coefficients, respectively. The total number

of parameters in this problem for n historical time steps given by

x and predictingm future time steps for y is nm +
m (m+1)

2
, where

nm edges are given by Θ, and
m (m+1)

2
by Λ. Since we are only

predicting a week ahead, the value ofm is 7. For this small value of

m, it is possible that the model can overfit due to the large number

of parameters. To overcome this, we use L1 regularization as it

leads to a sparser set of regression coefficients by driving the less

contributing coefficients to zero.

Figure 6: GCRF Response: graphical model showing con-

nections between historical response times, x1, ...,x14 and

y1, ...,y7, and among y1, ...,y7. Note that our model is sparse,

learning only edges between variables that matter; we illus-

trate this phenomenon by leaving out some edges in the

graphical model.

Figure 7: GCRF Demand: graphical model showing connec-

tions between historical response times, x1, ...,x14, historical
demands, d1, ...,d14, and y1, ...,y7, and among y1, ...,y7. Note
that our model is sparse, learning only edges between vari-

ables that matter; we illustrate this phenomenon by leaving

out some edges in the graphical model.

After expanding P (y | x ;Λ,Θ), and adding L1 regularization, the
optimization problem is as follows:
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min

Λ,Θ
−loд |Λ| +

1

k
tr (YTYΛ + 2YTXΘ + Λ−1ΘTXTXΘΛ−1)

+ λ( | |Λ| | + | |Θ| |) (4)

where k is the number of samples in X and Y . The last term

λ( | |Λ| | + | |Θ| |) gives the regularization term, where λ is the regu-

larization constant. We use the optimization method proposed by

Wytock et al. [23] for solving the GCRFwith L1 regularization. They
propose a second-order active set method, that iteratively produces

a second-order approximation to the objective function without

the L1 regularization term, and then solve the L1 regularized ob-

jective function using alternating Newton coordinate descent. For

additional details, we refer the reader to [23].

4.2.3 GCRFs for Non-emergency Response Prediction. We design

two prediction models: i) GCRF Response, which takes only past re-

sponse time data, and ii) GCRF Demand, which takes past response

time and demand data, to predict future response times.

Figure 6 shows our GCRF Response model for one 3-week data

sequence. Here, past median response times x1, ...,x14 have edges
to predicted median response times y1, ...,y7, where each edge

represents how much the variables influence each other. Note that

we start with a fully-connected graph between x andy and between

y’s. The incorporation of the L1 regularization norm can drive some

of these edge values to zero, thus yielding a sparser graph after

training. Note that in Figure 6, some edges between x and y have

been left out to illustrate the sparser nature of the graphical model

learned after training.

Figure 7 shows the GCRF Demand model for one 3-week data

sequence, in which we include historical demand (d1, d2, ... d14)
and historical response times to predict future response times. The

GCRF Demand model is a more complex model having an addi-

tional nm parameters. We implement our models using SGCRFPy,
a Python toolkit for sparse GCRFs

1
. We will make our system avail-

able as open source software.

5 IMPLEMENTATION DETAILS

The primary objective of NYCER is to accurately predict future

response times for 7 days based on previous 14 days data. To en-

able the proposed GCRF models (i.e., GCRF Response and GCRF

Demand) used in NYCER to make accurate predictions, we generate

sequences containing t weeks as input, and 1 week as output. We

adopt a sliding window approach that moves the window one day

at a time to cover the entire time series data, generating a sequence

of length t + 1 weeks each time the window slides. The default

value of t used in our experiments is 2.

To enable NYCER to provide accurate fine-grained predictions

with respect to agency, complaint type, and location, we train sep-

arate GCRF models on data filtered according to these different

attributes. We compare the performance of NYCER to a baseline

system that uses linear regression to make predictions. The main

metric used for evaluation is the root mean squared error (RMSE).

We report RMSE results for predicting future median response time

given the past median response time for each agency, complaint

type, and location. We report two different values of RMSE: i) for

1
Sparse GCRF implementation: https://github.com/dswah/sgcrfpy.

each predicted day separately (i.e., day 1 to day 7), as given by Equa-

tion 5 and ii) across all days, as given by Equation 6. In addition to

the RMSE, we also investigate the relative error (RE) in prediction,

which captures the fraction of error in the predicted response with

respect to the actual response (Equation 7).

RMSEdayj =

√∑h
i=1 (ŷi j − yi j )

2

h
(5)

RMSE =

∑m
j=1 RMSEdayj

m
(6)

REdayj =

∑h
i=1

|ŷi j−yi j |
yi j

h
(7)

whereyi j is the i
th

test sample for the jth day, ŷi j is the predicted
value of yi j , and h is the number of test samples.

5.1 Training

At training time, our GCRFmodels use the first 75% of the sequences

generated from the sliding window, which have t weeks input and
1 week output. The parameter Λ is initialized to the identity matrix

and Θ is initialized to all zeros. In total, GCRF Response has 49t+28
parameters while GCRF Demand has 98t+28 parameters. Even with

our default value of t=2, both GCRFmodels have significant number

of parameters making L1 regularization necessary. Using regular-

ization constant λ = 0.1, and 10, 000 iterations, we converge on a

set of dependencies learned from the training data. For each agency,

complaint type, and location, we train three GCRF Response models,

and three GCRF Demand models, due to the randomness involved

with the coordinate descent optimization.

5.2 Testing

At test time, our GCRF models use the remaining 25% of sequences

from the sliding window. To generate predictions using our GCRF

models, we sample from the normal distributionwithmean−Λ−1ΘT x .
Since we already learned the parameters Λ and Θ, we simply need

to use them in the first t weeks of each test sequence to generate a

prediction for 1 week. The predictions of the three learned GCRF

models are then averaged to produce a final prediction. This pre-

diction is tested against the ground truth response times and the

metrics RMSE and RE are calculated.

Our linear regression baseline model does not need the first 75%

of training sequences, as it simply produces a best fit straight line

on the first t weeks of each test sample, and predicts the next week

based on the line learned for that sample.

6 PERFORMANCE EVALUATION

In this section, we present experimental results that demonstrate

the superior predictive performance of NYCER. We first compare

RMSE results averaged over the entire predicted week for GCRF

Response and GCRF Demand with the baseline linear regression

models and demonstrate that GCRF models achieve superior predic-

tion performance. We then delve deeper and present fine-grained

performance results with respect to each agency, complaint type,
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Agency GCRF GCRF Linear

Response Demand Regression

NYPD 0.38 0.42 0.42

HPD 37.25 36.32 44.78

DOT 16.05 15.45 22.76

DSNY 10.25 10.34 15.85

DEP 17.78 17.59 30.07

DOB 94.24 142.28 115.38

DPR 105.41 187.73 113.48

DOHMH 49.89 49.57 63.89

Table 2: RMSE comparison across agencies

Complaint GCRF GCRF Linear

Type Response Demand Regression

Heat 15.09 14.02 23.65

Noise(r) 0.28 0.33 0.31

Park 0.61 0.64 0.72

Driveway 0.57 0.63 0.71

Street 21.74 21.42 33.02

Unsanitary 77.53 75.31 79.65

Water 6.38 6.37 8.19

Light 19.38 17.79 32.26

Noise(s) 0.55 0.56 0.66

Paint 71.35 69.85 78.82

Table 3: RMSE comparison across complaint types

Location GCRF GCRF Linear

Response Demand Regression

Brooklyn 16.33 16.01 21.93

Queens 9.99 9.77 13.62

Manhattan 16.21 15.75 22.11

Bronx 22.53 21.79 31.84

Staten Island 19.1 19.54 26.46

Table 4: RMSE comparison across locations

and location. Then, using relative error of predictions, we demon-

strate that our model is able to learn the nuances in the data re-

sulting in the predicted response times to be close to the actual

response times. We then study the impact of training on different

data sequence lengths on the predictive performance of the models

and observe that training on data sequences of length 2 weeks of

historical response time is sufficient to accurately predict future

response times. We conclude this section with qualitative results

comparing the predicted and actual response times.

Our experiments show the efficacy of the proposed models, with

both GCRF Response and GCRF Demand consistently outperform-

ing the baseline linear regression model. Additionally, our experi-

ments show that the GCRF Response model achieves performance

comparable to, and in some cases better than GCRF Demand, thus

demonstrating that a simple parsimonious model can elegantly

capture the subtle interdependencies in the data. Our results and

analysis ascertain that the NYCER system can be trained quickly,

and once trained requires low computational and data resources

at test time, thus making it an attractive system that can be easily

deployed in practice.

6.1 Average RMSE Results

In this subsection, we report the average RMSE results for the en-

tire predicted week (Equation 6). From Figures 2a–2d, we observe

that response times across agencies, complaint types, and loca-

tions have a high variance. Due to this reason, we train separate

models for each agency, complaint type, and location. This also

makes it possible for training and testing our models individually

to efficiently manage resources. Tables 2, 3, and 4 show the av-

erage RMSE results with respect to each agency, complaint type,

and location, respectively. We observe that the proposed GCRF

Response and the GCRF Demand models consistently outperform

the linear regression model by a significant margin. We observe

that GCRF Response outperforms linear regression for all agencies,

complaint types, and locations, while GCRF Demand outperforms

linear regression for all agencies, complaint types, and locations,

expect for the DOB and DPR agencies and the Noise-Residential

complaint type. Comparing GCRF Response and GCRF Demand, we

observe that both models provide comparable performance overall,

with GCRF Response significantly outperforming GCRF Demand

for DOB and DPR agencies. We hypothesize that the correlation

between demand and response is the primary reason behind the

more complex GCRF Demand model providing performance similar

to the simpler GCRF Response model.

The results in Tables 2, 3, and 4 indicate that the parsimonious

GCRF Response model is able to successfully capture the subtle in-

terdependencies in the data. Based on these results, we recommend

adopting the GCRF Response model in NYCER for performing all

required predictions. Therefore, in the following sections, we only

present results for the GCRF Response model and compare it to the

linear regression model.

6.2 Agency/Complaint Type/Location-wise

Performance

In this subsection, we investigate the performance of the GCRF Re-

sponse model with respect to agency, complaint type, and location,

per day of prediction by calculating RMSE per day (Equation 5).

Figures 8, 9, and 10 show the RMSE values for each of the seven

days for each agency, complaint type, and location, respectively.

We observe from these figures that the GCRF Response model

outperforms linear regression across agencies, complaint types,

and locations in per day prediction as well, particularly achieving a

significantly better performance further in the prediction sequence.

The main reason behind this behavior is that the GCRF Response

model learns the trend from historical responses, and is capable of

predicting the weekly peaks and dips in response time, whereas

linear regression can only produce a best fit straight line. The

GCRF Response model learns these trends by finding the strength

of dependencies between historical and estimated response times,

along with dependencies amongst the predictions, that maximize

the likelihood of the data.

We observe that the RMSE generally increases for both models as

they predict further into the future. This is understandable because

predicting further ahead into the future is usually more challenging.

Interestingly, we observe that in comparison to linear regression,

the increase in RMSE for the GCRF Response model is more gradual



MobiQuitous’18, November 2018, New York, USA DeFazio et al.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
30

35

40

45

50

55

R
M

S
E

GCRF Response

Linear Regression

(a) HPD

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
15

20

25

30

R
M

S
E

GCRF Response

Linear Regression

(b) DOT

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
0.35

0.4

0.45

0.5

R
M

S
E

GCRF Response

Linear Regression

(c) NYPD

Figure 8: Agency: Average RMSE comparison for each day in the prediction sequence
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Figure 9: Complaint Type: Average RMSE comparison for each day in the prediction sequence
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Figure 10: Location: Average RMSE comparison for each day in the prediction sequence
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Figure 11: Complaint Type: Relative error for each day in the prediction sequence

indicating the superiority of the proposed model. This effect is most

prominent in Figure 10.

Note that each agency, complaint type, and location have varying

scales of response times. For example, NYPD has a much shorter

response time than HPD. Therefore, it is expected that the absolute

value of RMSEwill be lower for NYPD than for HPD. For this reason,

each graph has differing scales.

6.3 Relative Error

While RMSE comparisons between GCRF and linear regression

provide valuable insight, studying relative error is important to

ensure that GCRF predictions are within an acceptable and useful

range of the actual values. Figure 11 shows the relative error for

both models for the top 3 complaint types. We observe that the

GCRF Response model outperforms linear regression with each of

the top 3 complaint types lying within 27% of the truth, even at
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Agency 1 week 2 weeks 4 weeks 6 weeks 8 weeks

NYPD 0.39 0.38 0.38 0.34 0.23

HPD 37.74 37.25 37.52 37.83 38.96

DOT 17.29 16.05 15.35 15.74 15.56

DSNY 11.43 10.25 9.76 9.67 9.67

DEP 19.4 17.78 17.39 16.86 16.53

DOB 98.69 94.24 76.76 74.33 73.98

DPR 115.48 105.41 116.38 104.84 112.05

DOHMH 50.57 49.89 49.51 48.87 49.02

Table 5: Agency: GCRF Response RMSE for different se-

quence lengths

Complaint 1 week 2 weeks 4 weeks 6 weeks 8 weeks

Heat 15.67 15.09 14.75 15.14 15.27

Noise(r) 0.28 0.28 0.27 0.26 0.23

Park 0.62 0.61 0.61 0.57 0.46

Driveway 0.59 0.57 0.58 0.56 0.5

Street 22.46 21.74 21.17 21.28 21.25

Unsanitary 74.53 77.53 79.2 81.13 84.59

Water 6.54 6.38 6.53 6.75 6.71

Light 22.46 19.38 17.72 17.21 16.81

Noise(s) 0.56 0.55 0.54 0.53 0.53

Paint 68.89 71.35 72.77 71.96 73.32

Table 6: Complaint Type: GCRF Response RMSE for differ-

ent sequence lengths

Location 1 week 2 weeks 4 weeks 6 weeks 8 weeks

Brooklyn 16.15 16.33 15.95 16.07 16.46

Queens 9.96 9.99 10.42 10.6 10.98

Manhattan 16.07 16.21 15.89 16.31 16.38

Bronx 23.27 22.53 22.19 22.27 22.09

Staten Island 19.85 19.1 20.71 21.68 22.16

Table 7: Location: GCRF Response RMSE for different se-

quence lengths

7
th

prediction step. In comparison, the worst case performance for

linear regression is 69%. From the figure, it is evident that GCRF

response only slightly increases in relative error by day 7, while

linear regression has significantly more difficulty predicting 7 days

ahead. This once again highlights how capturing the data’s under-

lying structure in a model can yield improved performance over a

sustained period of time.

We note that the GCRF Response model significantly outper-

forms linear regression for all other complaint types as well. In-

terestingly, in our experiments, we observe that certain complaint

types, such as Light and Water, have higher errors for both models.

For example, analyzing Light complaint type, we observe that the

response time is 0 when the detailed complaint type information is

"Street Light Out". The presence of zeroes adds to the variance of

this complaint type and makes it difficult for both models to predict

response times accurately.

6.4 Discussion on Sequence Length

Tables 5, 6, and 7 show the impact of training the GCRF Response

model on sequences of varying lengths. Increasing the sequence

length beyond two weeks has limited impact on the performance of

the GCRF Response model. In fact, for the GCRF Response model,

on average, the RMSE decreases by only 8.4% across agencies, 5.6%

across complaint types, and increases 5.2% across locations, when

given 8 weeks as input per sequence rather than 2 weeks. This

shows that GCRF response can extract the short term trends of the

data given just a few weeks, and longer sequence lengths only rein-

force the structure that was already learned.We observe that though

linear regression has substantially more improvement when given

longer sequences, the results are still inferior to GCRF response,

with only DPR and DOB beating GCRF across all agencies, com-

plaint types, and locations, when given 8 week sequence lengths.

6.5 Qualitative Results

In this subsection, we present qualitative results to illustrate the

predictive performance of the GCRF Response model. Figures 12

and 13 show the one step and seven step predictions of our model

for the top agency, complaint type and location for the entire test

data, respectively. Our qualitative results highlight two key points.

(1) GCRF Response, while parsimonious, also has enough com-

plexity for robust time series predictions. The figures clearly

show that GCRF Response predictions do not put too much

weight on the previous time step’s real value, a common

indication of a weak prediction model.

(2) Day 7 GCRF Response predictions continue to capture the

underlying structure in the data, and provide meaningful

predictions, even 7 days in advance.

It is also worth noting that our predictions for Heat are extremely

close to the actual median response times. We hypothesize that

this is because complaint types in general have lower variances

in response times than agencies and locations, as each agency re-

sponds to multiple complaint types, and each location has multiple

agencies and complaint types.

7 CONCLUSION AND FUTUREWORK

In this paper, we designed NYCER, a system for predicting future

response times of non-emergency services based on historical data.

NYCER uses GCRF based models at its core to elegantly capture

dependencies between historical and future response times so as

to accurately predict response times. We compared NYCER with

a baseline system that uses Linear Regression and observed that

our system significantly outperformed the baseline system both

in terms of RMSE and relative error. Based on our experiments,

we observed that training the GCRF models on sequences with

two weeks of historical median response times is sufficient for

accurately predicting the next week’s median response times.

Our investigation opens up several avenues for future research.

An immediate extension is to elicit the scalability of NYCER by con-

ducting experiments on non-emergency services data from other

cities and demonstrating its superior performance. We also plan to

extend the proposed GRCF models so as to jointly predict demand

and response. Additionally, we plan to compare and contrast differ-

ent time-series prediction models, including ARMA(autoregressive

moving average) [22], various deep learning approaches such as

LSTM, and different graphical models. These models can be evalu-

ated based on prediction performance, as well as other attributes

such as interpretability, ease of use, and ability to encode different
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Figure 12: Real vs. predicted: Day 1 prediction of test data
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Figure 13: Real vs. predicted: Day 7 prediction of test data

features. NYCER’s current design primarily focuses on predicting

short-term response times so as to aid city planners perform effi-

cient resource allocation on a weekly basis. An interesting direction

of future research will be to predict long-term response times by

capturing the monthly and yearly seasonality of the data, taking

weather conditions into account. Such long-term predictions can be

particularly beneficial in making annual budget allocations and for

hiring new personnel for the next year. A longer term goal will be

to integrate the short-term and long-term prediction models into

NYCER in a manner such that it can be readily deployed in practice.
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