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ABSTRACT
Accurately predicting water consumption in residential and com-
mercial buildings is essential for identifying possible leaks, min-
imizing water wastage, and for paving the way for a sustainable
future. In this paper, we present SWaP, a Smart Water Prediction
system that predicts future hourly water consumption based on
historical data. To perform this prediction task, in SWaP, we design
discriminative probabilistic graphical and deep learning models,
in particular, sparse Gaussian Conditional Random Fields (GCRFs)
and Long Short Term Memory (LSTM) based deep Recurrent Neu-
ral Network (RNN) models, to successfully encode dependencies
in the water consumption data. We evaluate our system on water
consumption data collected from multiple buildings in a university
campus and demonstrate that both the GCRF and LSTM based deep
models are able to accurately predict future hourly water consump-
tion in advance using just the last 24 hours of data at test time.
SWaP achieves superior prediction performance for all buildings
in comparison to the linear regression and ARIMA baselines in
terms of Root Mean Squared Error (RMSE) and Mean Absolute Er-
ror (MAE), with the GCRF and LSTMmodels providing 50% and 44%
improvements on average, respectively. We also demonstrate that
augmenting our models with temporal features such as time of the
day and day of the week can improve the overall average prediction
performance. Additionally, based on our evaluation, we observe
that the GCRF model outperforms the LSTM based deep learning
model, while simultaneously being faster to train and execute at
test time. The computationally efficient and interpretable nature
of GCRF models in SWaP make them an ideal choice for practical
deployment.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Machine learning approaches.
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1 INTRODUCTION
With climate change exacerbating extreme weather conditions in-
cluding droughts and famines [1], understanding and predicting
human water consumption is critical for ensuring a sustainable
future. For example, the state of California, USA experienced one
of its longest droughts from December 2011 to March 2019 [2]. Sim-
ilarly, in recent times, the city of Capetown, South Africa was faced
with a severe water crisis, where it was about to run out of drinking
water for its citizens [4]. Therefore, predicting future water con-
sumption in residential and commercial buildings has become an
extremely important problem, particularly to efficiently monitor
water consumption, identify possible leaks, minimize wastage, and
match demand and supply. However, despite this need to design
intelligent solutions to facilitate smart water usage, there is limited
prior research from the computing community in this research area
[7, 26].

Therefore, in this paper, we design SWaP, a SmartWaterPredict-
ion system, which predicts future hourly water consumption based
on historical data. The water consumption prediction problem can
be viewed as a classic time series prediction problem, thus mak-
ing it amenable to statistical methods such as ARIMA as well as
recently developed machine learning methods. To enable SWaP
make effective predictions, we explore two classes of discriminative
machine learning models—probabilistic graphical models and deep
learning models that have been shown to be effective for multiple
time-series prediction problems [8, 16]. We design a structured
regression graphical model, Gaussian conditional random fields
(GCRFs), to successfully encode dependencies between historical
and future water consumption [27]. Specifically, we leverage and
adapt a recently developed sparse and computationally efficient
variant of GCRFs [34]. We also design a Long Short-Term Memory
(LSTM) based recurrent neural network (RNN) model that captures
the underlying patterns in water consumption data.

The proposed GCRF model is parsimonious in nature and cap-
tures the underlying dependencies between the input (i.e., the past
water consumption data) and output variables (i.e., the future water
consumption predictions) as well as those between the output vari-
ables. As we construct a sparse GCRF model, the model only learns
the necessary dependencies among the input and output variables
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that are helpful in the prediction. In comparison, the proposed deep
learning model consists of an encoder and a decoder, each of which
separately is an RNN. The encoder takes past water consumption
data and computes a state vector that encodes the underlying de-
pendancies in the data. The decoder then utilizes this state vector
to generate water consumption predictions.

To evaluate the performance of SWaP, we collect hourly water
consumption data for 14 buildings from a university campus for the
Fall 2018 semester (approximately 4.5 months). We classify these
buildings into 4 categories—academic building, dining hall, gym and
residence hall. The buildings in the dataset comprise of 6 academic
buildings, 1 dining hall, 1 gym and 6 residence halls. We compare
the performance of SWaP with linear regression and ARIMA base-
lines with respect to the Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) and demonstrate that SWaP signifi-
cantly outperforms the baselines. The GCRF and LSTM based deep
learning models in SWaP provide an average improvement of 50%
and 44%, respectively. Additionally, we demonstrate that augment-
ing our models with temporal features such as time of the day
and day of the week can improve the overall average prediction
performance.

We note that both the GCRF and deep models only require the
past 24 hours of water consumption data to predict future water
consumption at test time, thus making SWaP an attractive system
that can be readily deployed in practice. Additionally, our exper-
iments also show that the GCRF model provides overall better
performance than the LSTM-based deep model. Therefore, based
on our experiments, we recommend using a GCRF-based SWaP for
the hourly water consumption prediction problem. The superior
performance of GCRF models along with its low computational
requirement during the training and execution phases makes SWaP
a highly desirable and practically feasible prediction framework.
Moreover, the sparse GCRF model only captures the necessary de-
pendencies between the input and output variables, thus making
the GCRF-based SWaP inherently interpretable.

2 RELATEDWORK
In this section, we first outline research related to addressing wa-
ter management problems, and then review literature related to
forecasting applications in the ubiquitous computing domain.

To mitigate the negative impacts of climate change, a number
of recent research initiatives have focused their attention on water
management related problems [7, 23, 25, 26, 32]. Short-term fore-
casting of water consumption based on water meter readings is
conducted in [13], while neural network based models for daily
water demand forecasting on a touristic island is proposed in [25].
Assem et al. use DeepCNN to predict urban water flow and water
level based on input features such as maximum temperature, mini-
mum temperature and run-off [7]. Bejarano et al. design a random
forest and SVM based framework to investigate the availability of
water pumps in developing and under-developed regions [9]. Simi-
larly, logistic regression and Bayesian analysis have been applied
to understand the factors associated with the non-functionality of
hand pumps [18, 19]. Prior work has also investigated the interac-
tion and use of water with other resources such as energy and food,
popularly known as the water-energy-food nexus [5, 17, 22, 31].

In comparison to existing research, we propose GCRF and LSTM
based deep learning models for water consumption prediction and
validate the efficacy of the models using real-world data collected
from multiple buildings in a university campus.

Recently, a variety of different models including statistical mod-
els such as ARIMA [12, 33], evolutionary algorithms [28] and data-
driven approaches [6, 8, 36] have been applied to variety of forecast-
ing and smart computing tasks. Arjunan et al. design a framework
called OpenBAN for electricity demand forecasting leveraging algo-
rithms such as decision tree, neural networks, SVM, naive bayes and
k-NN [6]. Deep learning models for crime prediction from multi-
modal data and spotting garbage from images has been proposed in
[24] and [30], respectively. Mobility and traffic flow modeling at the
city level has been explored in [10, 11, 35]. Similarly, model-based
and machine learning techniques have also been proposed for solar
power and irradiance forecasting [14, 29].

3 PROBLEM STATEMENT AND DATA
In this section, we discuss the water consumption prediction prob-
lem and provide an overview of the data collected to validate the
performance of our model.

3.1 Problem Statement
In this paper, our goal is to design a system to predict hourly wa-
ter consumption based on real-world data collected from multiple
buildings in a university campus. Water consumption forecasting
can be modeled as a classic univariate time series forecasting prob-
lem, where at any time T , the goal is to predict water consumption
k steps into the future (i.e., ŷT+1, ŷT+2 ..... ŷT+k ) based on data avail-
able for the past n time steps (i.e., xT , xT−1..... xT−n ). Note that ŷT+i
denotes the predicted value of the actual water consumption yT+i
at timeT +i . As the problem studied here can be cast as a time series
forecasting problem, both statistical techniques such as ARIMA and
recently developed data-driven and machine learning approaches
can be leveraged and adapted to address this problem. In this paper,
we develop sequence-to-sequence probabilistic graphical and deep
learning models for the water consumption prediction problem
and demonstrate empirically that they perform better than ARIMA
models. We discuss our rationale for choosing the above-mentioned
models and the details of our system in Section 4.

3.2 Data
We collect hourly water consumption data for 14 buildings in a
university campus. These buildings fall into 4 categories— academic
building, dining hall, gym, and residence hall. The buildings in the
dataset comprise of 6 academic buildings, 1 dining hall, 1 gym and
6 residence halls. We collect data for approximately 4.5 months
when the university is in session, beginning from August 1, 2018
to December 8, 2018 (i.e., Fall 2018 semester). Therefore, we have
approximately 3000 data points for each building. Table 1 shows
the median hourly and daily water consumption for all buildings.

We discuss the general trends in water usage for buildings in
each category. Figure 1 shows the daily water usage for one repre-
sentative building in each category for the entire time period. We
observe that during the last two months, the total water consump-
tion decreases for the dining hall and gym (Figures 1a and 1b).While



SWaP: Probabilistic Graphical and Deep Learning Models for Water Consumption Prediction BuildSys’19, November 13-14 2019, New York, New York USA

20 40 60 80 100 120

Day

0

1

2

3

W
at

er
 C

o
n

su
m

p
ti

o
n

 (
g

al
)

10
4

(a) Gym GE

20 40 60 80 100 120

Day

0

0.5

1

1.5

2

2.5

W
at

er
 C

o
n

su
m

p
ti

o
n

 (
g

al
)

10
4

(b) Dining Hall C4
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(c) Residence Hall RA
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(d) Academic Building S2

Figure 1: Trends in datasets (daily consumption)
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(b) Dining Hall C4
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(d) Academic Building S2

Figure 2: Trends in datasets (hourly consumption)

Table 1: Median Water Consumption

Building Category Median Median
(Hourly) (Daily)

EB Academic Building 33 1765
FA Academic Building 49 2478
LH Academic Building 72 4029
S2 Academic Building 43 1148
S3 Academic Building 357 12413
SN Academic Building 243 6455
C4 Dining Hall 304 7029
GE Gym 280 8420
BN Residence Hall 380 10180
BR Residence Hall 220 5920
DE Residence Hall 500 12910
DG Residence Hall 410 11230
JS Residence Hall 520 13510
RA Residence Hall 490 13490

the exact reason is unknown, based on the timing, we hypothesize
that this could be related to air-conditioning, cooling/heating. We
also observe that residence halls have lower water consumption for
the first 20 days (Figures 1c). This is because residence halls open
from 20th August after the student orientations. In comparison, as
academic buildings are in use throughout the year, we observe that
the water consumption remains in the same range throughout the
year (Figures 1d).

Figure 2 shows the hourly water usage for 48 hours (September
6 and 7) where hour 1 and hour 25 correspond to the time between
12 am and 1 am for two consecutive days. We observe that gym
and dining hall have highest water usage from 9 am to 9 pm (which
approximately corresponds to the time duration for which these
facilities are open). Water consumption for residence halls drops
at night for around 5 hours when most students are asleep. In
comparison, academic buildings have water consumption in the
same range throughout the day. We hypothesize long/late working
hours of graduate students and cooling needs for equipment to
be the main reason for this behavior. We note that most utilities
including water and electricity are shut down during Thanksgiving
week for all campus buildings. As water consumption values mostly
correspond to zeroes during this week, we remove the Thanksgiving
week values to prevent possible misrepresentation in the model
due to this data. Additionally, the dataset has around 0.3% missing
values. We use linear regression to fill in these missing values.

4 SWaP: SMARTWATER PREDICTION
In this section, we provide an overview of SWaP, a SmartWater
Prediction system that takes as input historical water consumption
data and outputs future water consumption predictions. Figure 3
shows the different components of our system. SWaP comprises
of a data pre-processing component, which pre-processes the wa-
ter consumption data and a prediction component consisting of
the proposed models that takes the pre-processed data to generate
the desired predictions. We design two models, a discriminative
probabilistic graphical model and a deep learning model for the
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prediction component in SWaP. Specifically, we design i) sparse
Gaussian Conditional Random Fields (GCRFs) and ii) Long Short
TermMemory (LSTM) based deep Recurrent Neural Network (RNN)
models to successfully encode dependencies in the water consump-
tion data. At timeT , both models accept an input sequence X = [xT ,
xT−1, ...., xT−n], which corresponds to amount of water consumed
in the last n time steps and generate predictionsY = [ŷT+1, ŷT+2, ....,
ŷT+k ] for the next k time steps. We note that the input and output
sequences can be of different lengths.

4.1 Why Sequence-to-Sequence Models?
Traditional model-based and statistical approaches (e.g., ARIMA
models, filtering techniques) provide valuable insights into data,
and are highly desirable when limited computational resources and
data are available to make decisions. The increase in computational
power, the availability of large amounts of data, and growth in
the field of machine learning presents the opportunity to design
data-driven techniques capable of providing superior prediction
performance in real-world settings. This provides us the opportu-
nity to explore sequence-to-sequence models that are well suited
for time-series data problems requiring mapping input sequences to
output sequences. Sequence-to-sequence models possess the ability
to predict an entire sequence of data points based on past data, thus
being able to predict further into the future. To this end, we identify
sequence-to-sequence probabilistic graphical (i.e., sparse GCRFs)
and deep learning models that have been extensively used for a
number of forecasting and prediction tasks [7, 8]. Both GCRF and
deep models elegantly learn and capture non-linear dependencies
as the encoded signal passes through the network, thus having a
positive impact on prediction.

  

Raw
data

Preprocessing
LSTM

GCRF

Preprocessed 
Files

(buildings)

Prediction building 1

Prediction building N

. . .

Figure 3: System Architecture

4.2 Sparse GCRF Model
In any machine learning model, a careful tradeoff between model
complexity and prediction performance needs to be made to avoid
overfitting and achieve good prediction performance. Hence, it is
important to capture the dependencies that are important to the
prediction. Conditional random fields (CRFs) are a discriminative
model that only model dependencies between input features and
output variables and among output variables and do not require the
specification of dependencies among input features. This helps in
avoiding any incorrect assumptions in dependencies among input
features and focus on the dependencies that directly affect the target
variables, and hence, prediction performance. In our problem, we

leverage a recent version of CRF extended to structured regression,
sparse GCRFs [34], for predicting future consumption.

The GCRF distribution is given by

P (Y |X ;Λ,Θ) = (1/Z (X )) ∗ exp (−Y ′ΛY − 2X ′ΘY ) (1)

where, X = [x1,x2, ...,xn] represents historical hourly consump-
tion, n is the number of hours in the past, Y = [ŷn+1, ŷn+2, ....,
ŷn+k ] represents predicted hourly consumption, and k indicates the
number of hours in the future. Θ and Λ are parameters/regression
coefficients of the GCRF model. Θ is an nxm matrix, containing the
edges betweenX andY andΛ is themxm inverse covariance matrix,
containing the edges amongst the y’s. The CRF is a Gaussian distri-
bution with mean −Λ−1Θ′X and variance Λ−1,N (−Λ−1Θ′X ,Λ−1).
Z (X ) in Equation 1 is the partition function, which ensures that
the posterior is integrated to 1.

At training time, we estimate the parameters Θ and Λ by max-
imizing the probability of the data given the parameters using
maximum likelihood,

max
(Λ,Θ)

P (Y |X ;Λ,Θ)

This is equivalent to minimizing the log-likelihood,

min
(Λ,Θ)

−loд(P (Y |X ;Λ,Θ))

Regularization is a way to avoid overfitting by penalizing high-
valued regression coefficients and helps in making models gen-
eralize better at test time. L1 and L2 are two popularly used reg-
ularization norms that add a penalty term corresponding to the
absolute value of the magnitude of the coefficients and square of
the magnitude of the coefficients, respectively. The total number of
parameters in this problem for n historical time steps given by X
and predicting k future time steps for Y is nk + k (k+1)

2 , where nk
edges are given by Θ, and k (k+1)

2 by Λ. Even for k = 12 ( as is the
case in our setting), it is possible that the model can overfit due to
the large number of parameters.

To retain only meaningful dependencies, this sparse variant of
GCRFs incorporates L1 regularization. L1 regularization reduces
the parameter values of dependencies that do not contribute to the
prediction to zero, thus creating sparsity in the graphical model
structure. As part of L1 regularization, a penalty term equal to the
absolute value of the magnitude of the coefficients is added to the
GCRF objective to penalize high-valued regression coefficients and
avoid overfitting due to large number of parameters. L1 is more pre-
ferred than L2 here as it drives less contributing parameter values to
zero, thus completely removing their effect on the prediction. Thus,
L1 learns a model that is appropriately complex for the prediction
problem.

We use the optimization method developed by Wytock et al.
[34] to solve the GCRF with the L1 regularization term. They de-
velop a second-order active set method that iteratively produces
a second-order approximation to the objective function without
the L1 regularization term, and then solve the L1 regularized ob-
jective function using alternating Newton coordinate descent. For
additional details, we refer the reader to [34]. Figure 4 gives the
structure of the GCRF model. We can see that there are edges show-
ing the dependencies between the inputs X and outputs Y . Also
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ŷn+1% ŷn+2% ŷn+k%

x1% x2% x3% xn%

…"

…"

Figure 4: GCRF water consumption prediction model show-
ing connections between historical consumption, x1,...,xn
and yn+1, ...,yn+k , and among yn+1, ...,yn+k . Note that our
model is sparse, learning only edges between variables that
matter. In the graphical model, we illustrate this by leaving
out some edges.

note that some edges in the graphical model have been left out to
illustrate sparsity in the learned model.

4.2.1 Implementation Details. The GCRF training and test setup
is given in Figure 5. We implement our models using SGCRFPy, a
Python toolkit for sparse GCRFs1. We split the datasets into two
parts—the first part consisting of 75% of the data is used for training
and the remaining 25% is used for testing. At training time, our
GCRF models use past n hours as input and next k hours as output.
As water consumption patterns typically are likely to follow a 24-
hour cycle, we use n = 24 and k = 12 in our experiments. The
parameter Λ is initialized to the identity matrix and Θ is initialized
to all zeros. We use regularization constant λ = 0.1 and train the
model for 10,000 iterations to converge on a set of dependencies
learned from the training data. For each building, we train a separate
GCRF model.

The parameter values Λ and Θ learned at training time are
plugged into each test sequence of length n to generate a prediction
for the next k hours. To compute the prediction performance scores,
the predicted values Ŷ are compared with the ground truth water
consumption values Y . For a particular configuration of parameter
values, the training time for GCRF is less than 5 minutes on a stan-
dalone lab machine. The RAM requirement for training is also low.
The testing phase only takes a couple of minutes.

  

Buildings

BN

BR

SN

75%
training

25%
testing

GCRF
Model
Test

GCRF
Model

Predictions

Estimate 
Parameter

. . .

Regularization

Figure 5: GCRF Training and Test Setup

1Sparse GCRF implementation: https://github.com/dswah/sgcrfpy.

4.3 RNN Encoder-Decoder Model
The temporal dependence between the data instances in a sequence
prediction problem make recurrent neural networks (RNNs) an
appropriate fit for the problem. An RNN consists of a hidden state
h and an output Y that operates on input X . At each time step t ,
the hidden state of the RNN is given by,

ht = f (ht−1,xt ) (2)
where, f is any non-linear activation function and 1 ≤ t ≤ n. In our
problem, f follows a neural network architecture comprising of
a network of nodes organized into sequential hidden layers with
each node in a given layer being full connected to every other node
in the next successive layer. Each hidden state serves as memory
and its output is calculated using the output of the previous hidden
state and the input xt as shown in Equation 2. Since RNNs are
known to suffer from the vanishing or exploding gradient problem
[21] when sigmoid functions are used, our architecture uses LSTM
cells that use memory cells to store relevant information needed to
learn long range temporal dependencies in the data. We refer the
reader to Goodfellow et al. for more details on RNN [20].

We develop an LSTM-based RNN encoder-decoder sequence-
to-sequence model as shown in Figure 6 [15]. The architecture of
both the encoder and decoder is an RNN. The basic cell in both the
encoder and the decoder is an LSTM. The encoder accepts an input
sequence and generates a hidden encoded vector c encapsulating
the information for the input sequence. This encoded vector is given
as an input to the decoder, which then generates the predictions.
The input X is transformed into the output Ŷ using the hidden
layers and the weight matrices. The weight matrices essentially
capture the information needed to generate the output predictions
based on the input data. The LSTM cell used in our model consists of
a number of interconnected gated units. The three gates in an LSTM
cell are namely, the input gate, the output gate, and the forget gate
that lets it handle long-term dependencies. To prevent prediction
of negative water consumption values, a ReLU activation function
is used after each decoder output.

…"

x1# x2# xn#

c"

…"

ŷn+1# ŷn+2" ŷn+k"

Encoder"

Decoder"

Figure 6: Encoder-decoder based RNN

4.3.1 Implementation Details. We use TensorFlow2 for implement-
ing the deep learning models. As mentioned in Section 4.2.1, we
2https://www.tensorflow.org/
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similarly split the datasets into two parts—the first part consisting
of 75% of the data is used for training and the remaining 25% is
used for testing. Similar to the GCRF models, we use water con-
sumption of past 24 hours (i.e., n = 24) and predict 12 hours into
the future (i.e., k = 12). These settings ensure that the results from
both these models are directly comparable. As deep models are
computationally expensive, we train our models on a shared high
performance computing cluster available at our university. Using
this cluster, we are able to execute 10 to 15 experiments in parallel.
Each experiment is allocated 4 cores and 10 GB of RAM. For the
datasets considered in this work, for a particular configuration of
parameters, training the deep models (i.e., a single experiment) can
take in the order of 1 - 12 hours, which is typical of deep learning
models.

We experiment with different number of stacked layers, different
numbers of hidden units in each layer as well as the lengths of the
input and output sequences. We observe that depending on the
dataset, different parameter configurations provide the best perfor-
mance. However, we empirically observe that overall 1 stacked layer
with 200 hidden units generalizes better across all the buildings.
We use a learning rate of 0.01 and train the model for 1000 epochs.
At training time, the encoder and decoder are trained jointly using
the backpropagation algorithm. We use unguided training as the
training scheme, where the decoder uses previous predicted output
value as an input to the next step of the decoder. Unguided training
enables the model to better explore the state space, which usually
results in superior prediction performance at test time. Additionally,
to minimize overfitting, we incorporate L2 regularization in the
models.

In comparison to training, the testing phase of a model takes
only a couple of minutes for each experiment. The learned weight
values for the different connections in the neural network are used
to generate a prediction for the test data instances.

5 PERFORMANCE EVALUATION
We compare the performance of GCRF and deep learning models
with two baselines—linear regression and Auto-Regressive Inte-
grated Moving Average (ARIMA) models. The code for our models,
the pre-processed data, and the experiments is available in [3].
Linear Regression: It is a simple statistical model that fits the best
straight line based on the input data.
ARIMA(p, d, q): It is a statistical model that has three components
— AR (autoregressive term), I (differencing term) and MA (moving
average term), which are specified by p, d and q respectively. p
represents the past values used for predicting the future values, d
represents the degree of differencing (i.e., the number of times the
differencing operation is performed tomake a series stationary), and
q represents the number of error terms used to predict the future
values. At any time T , the equation of ARIMA used for prediction
is given by,

(1 −
p∑
i=1

ϕiL
i ) (1 − L)dxT = (1 −

q∑
i=1

θiL
i )eT (3)

where xT corresponds to the water consumption values, ϕi and
θi are the auto-regressive and moving average parameters, eT are

the error terms and L is the lag term. The error terms eT are as-
sumed to be independently and identically distributed according to
normal distribution. In our experiments, we use the Auto-ARIMA
toolkit3 in python that searches through a combination of the pa-
rameters p, d , and q, and picks the optimal combination for the
data in consideration. As both linear regression and ARIMA are
statistical baselines, they do not require any explicit training. They
use water consumption for the past 24 hours to predict 12 hours
into the future.

We use root mean squared error (RMSE) and mean absolute
error (MAE) as the main evaluation metrics, which are given by
Equations 4 and 5 respectively.

Table 2: RMSE

(a) Hour 1

Building GCRF LSTM ARIMA LR
BN 130.69 140.08 175.71 314.12
BR 68.62 65.44 92.6 166.06
C4 101.64 99.56 123.83 233.66
DE 151.17 169.45 192.74 330.34
DG 141.86 168.11 200.16 330.06
EB 59.16 58.64 63 89.36
FA 48.48 57.91 63.27 85.49
GE 119.88 128.27 140.88 184.78
JS 127.04 173.75 183.13 361.19
LH 80.55 83.2 109.29 180.39
RA 161.22 178.15 230.01 400.57
S2 18.78 22.19 24.12 32.88
S3 196.37 259.56 269.45 400
SN 112.79 116.23 119.68 125.89

(b) Average

Building GCRF LSTM ARIMA LR
BN 151.2 154.95 345.31 406.11
BR 88.28 84.89 171.29 206.36
C4 148.26 164.81 256.28 316.19
DE 184.95 201.96 364.89 418.18
DG 168.83 190.53 329.99 398.63
EB 70.5 75.46 103.09 114.35
FA 58.17 81.93 107.35 111.26
GE 138.81 145.61 195.25 237.16
JS 162.15 190.96 380.72 461.5
LH 116.77 122.53 249.26 242.29
RA 188.31 203.88 412.93 488.15
S2 23.26 26.01 40.23 44.11
S3 238.64 313.26 516.58 536.86
SN 124.43 134.13 144.42 155.8

RMSEj =

√∑h
i=1
(
ŷi j − yi j

)2
h

(4)

MAEj =

∑h
i=1 |ŷi j − yi j |

h
(5)

3https://pypi.org/project/pyramid-arima/
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where yi j is the ith test sample for jth hour, ŷi j is the predicted
value of yi j , and h is the total number of test samples.
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Figure 7: RMSE

5.1 RMSE
In this subsection, we discuss RMSE results for all models. Figure
7 shows the performance of the models for one building in each
category. From Figure 7, we observe that GCRF and LSTM outper-
form the baselines significantly. We also observe that RMSE values
for linear regression and ARIMA increase considerably with each
predicted hour into the future. In comparison, the RMSE values
increase gradually for the GCRF and LSTM models, which demon-
strates that our models are able to predict considerably better into
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Figure 8: MAE

the future. We attribute this to the sequence-to-sequence modeling
aspect of these models.

Table 2 shows RMSE results for hour 1 and the average over the
12 predicted hours for all buildings. We observe from the table that
for all the buildings, GCRF and LSTM outperform the baselines.
The overall performance improvement of GCRF over ARIMA and
linear regression is in the range of 14% to 65%, while the gains of
LSTM over ARIMA and linear regression is in the range of 7% to
62%. We also see that for most buildings GCRF performs better
than LSTM. We believe that the sparse nature of the L1-regularized
GCRF model helps in learning the dependencies that positively
affect the prediction performance, while excluding those that do
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Table 3: MAE

(a) Hour 1

Building GCRF LSTM ARIMA LR
BN 98.51 105.04 138.36 254.13
BR 52.5 49.44 73.14 132.17
C4 68.52 67.05 82.81 185.04
DE 105.55 121.29 147.45 266.17
DG 108.11 122.9 158.01 262.01
EB 26.48 30.02 33.07 58.62
FA 28.08 36.51 38.51 64.97
GE 77.25 94.86 97.35 144.4
JS 98.73 134.3 146.78 291.42
LH 51.54 52.84 65.61 129.14
RA 124.78 132.38 179.4 316.81
S2 13.54 16.32 17.18 25.11
S3 134.77 165.3 179.33 295.57
SN 66.02 70.38 77.5 87.94

(b) Average

Building GCRF LSTM ARIMA LR
BN 112.94 115.82 257.6 341.42
BR 65.84 63.82 132.02 169.25
C4 101.38 111.46 181.42 259.52
DE 133.9 147.14 266.29 345.39
DG 129.51 145.06 259.23 327.47
EB 37.09 41.76 63.51 81.45
FA 36.21 51.58 71.64 89.36
GE 93.48 99.01 147.34 194.71
JS 125.53 149.52 291.68 383.13
LH 74.62 77.7 150.07 178.77
RA 149.31 153.18 304.59 401.4
S2 16.87 18.94 28.13 34.16
S3 161.37 203.31 325.96 414.75
SN 80.42 89.05 100.92 115.11

not matter. This helps in yielding a model that is better suited to
the data.

5.2 MAE
In this subsection, we discuss the MAE results for all models. Figure
8 shows the performance of the models for one building in each
category. In comparison, Table 3 shows the 1 hour and the average
(taken over predictions for the next 12 hours) MAE results. We
observe that the GCRF and LSTM models outperform the baselines
for all buildings with respect to MAE. The performance improve-
ment of GCRF over ARIMA and linear regression is in the range of
20% to 67%, while improvement of LSTM over ARIMA and linear
regression is in the range of 12% to 66% with respect to the average
MAE. Once again, we see that for most buildings GCRF achieves a
better performance than LSTM. The performance improvement of
GCRF over LSTM is approximately 10%.

5.3 Qualitative Results
In this subsection, we compare the qualitative prediction perfor-
mance of the GCRF and LSTMmodels with the baselines to help the

reader appreciate the superior performance of our models. Figures
9a and 9b show the 1 hour and 12 hour predictions for GCRF and
linear regression, while Figures 10a and 10b show the 1 hour and 12
hour predictions for LSTM and ARIMA for residence hall RA. For
the 1 hour prediction, we observe that as linear regression tends to
closely follow the actual values in the previous time step, it provides
poor prediction performance as the recent past may not mirror the
future. In comparison, GCRF generates smoothened predictions as
it is trained on entire input sequences and thus provides superior
performance. Additionally, we observe from Figure 9b that the 12
hour prediction for linear regression is notably worse than its 1
hour prediction. In comparison, as GCRF takes entire sequences
into account and captures the underlying variations in the data, its
12 hour prediction performance does not deteriorate significantly.
Similar to GCRF, as LSTM is also a sequence-to-sequence model
and elegantly capture the dependencies in the data, its prediction
performance does not decrease with larger time steps (Figures 10a
and 10b).

5.4 Adding Temporal Features
In the experimental results reported so far, we have only used the
previous water consumption data to predict future water consump-
tion. In this subsection, we investigate the performance improve-
ment of augmenting our GCRF and LSTM models with temporal
features. To this end, we add two features— i) day of the week and
ii) hour of the day in our model. Day of the week takes values from
1 to 7, where 1 denotes Sunday. Hour of the day take values from 1
to 24, where 1 denotes the time period from 12 am to 1 am. Table 4
shows the average performance improvement over 12 predictions
obtained by our augmented models over their respective baseline
GCRF and LSTM models. We observe from the table that including
the temporal features improves performance for most buildings for
both GCRF and LSTM. The average performance improvement for
GCRF and LSTM are 8.42% and 10.31%, respectively. The highest
improvement is observed in academic buildings where the perfor-
mance is enhanced by around 15% for building S3 in GCRF and 24%
for building LH in LSTM.
Table 4: Percentage improvement after adding features

Building GCRF LSTM
BN 6.68% 10.49%
BR 8.36% 10.54%
C4 5.01% -
DE 7.66% 6.67%
DG 7.6% 15.6%
JS 8.34% 7.51%
LH - 24.34%
RA 6.43% 5.92%
S2 11.13% 6.57%
S3 14.58% 5.21%

5.5 Varying Sequence Length
In this subsection, we discuss the impact of varying sequence length
and the rationale behind choosing 24 time steps as the input se-
quence length. Table 5 shows the average RMSE results for input
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Figure 9: Qualitative Results: GCRF vs Linear Regression
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Figure 10: Qualitative Results: LSTM vs ARIMA

Table 5: RMSE Varying Sequence Length

Building GCRF LSTM
12 18 24 12 18 24

BN 252.71 175.74 151.2 176.83 165.27 154.95
BR 134.87 101.33 88.28 95.81 80.69 84.89
C4 184.67 151.78 148.26 173.33 158.43 164.81
DE 272.67 208.73 184.95 220.61 217.21 201.96
DG 264.93 198.56 168.83 221.84 189.84 190.53
EB 79.56 72.18 70.5 80.91 80.37 75.46
FA 71.76 60.57 58.17 90.91 87.39 81.93
GE 163.67 142.03 138.81 226.45 148.29 145.61
JS 283.89 194 162.15 244.38 187.51 190.96
LH 135.44 118.01 116.77 126.84 138.97 122.53
RA 312.18 225.17 188.31 259.07 204.04 203.88
S2 28.77 24.11 23.26 31.65 28 26.01
S3 316.76 247.7 238.64 330.36 326.43 313.26
SN 130.51 125.12 124.43 135.75 133.03 134.13

sequence lengths 12, 18 and 24. We observe that for both models
RMSE values are the worst for all buildings when the sequence
length is 12. We also see that for most buildings having sequence
length of 24 provides better performance than sequence length of 18.
This is because a sequence length of 24 captures water consumption
behavior for all hours of the day. Having sequence lengths greater
than 24 does not significantly improve performance as longer se-
quences only reinforce previously learnt structure in the data.

5.6 Discussion on SWaP’s practicality
The above experiments demonstrate that the GCRF-based SWaP
overall outperforms the LSTM-based SWaP. Therefore, we rec-
ommend using the GCRF-based SWaP due to its superior predic-
tion performance. Employing the GCRF-based SWaP also provides
the system with greater interpretability as GCRF is a probabilistic
graphical model and it is easy to understand and appreciate which
inputs/past outputs are instrumental in arriving at the predictions.
These insights can help in understanding the inherent patterns in
the data and explain the predictions, when necessary.

Additionally, in comparison to deep learning models, GCRF mod-
els require significantly less time (around 5minutes when compared
to few hours for deep learning models) and limited computational
resources to train. This further means that in a deployed system,
as new data becomes available, it is relative easy to re-train the
model. Also, we observe that both the models perform well during
test time on > 30 days of consecutive data without the need for
re-training. Thus, it is only required to re-train both the models at
comparatively infrequent intervals, aiding in practical deployment.

Another attractive aspect of SWaP is its low data and computa-
tional power requirement at test time. A well-trained SWaP sys-
tem only requires 24 prior data points at test time to make strong
predictions. Moreover, both GCRF and deep models are highly com-
putationally efficient at test time, which means that it can generate
the predictions quickly, a desired attribute in a practical system.
These characteristics of SWaP, in particular the GCRF-based one,
make it a useful system for managing water consumption. These
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qualities also make the system potentially extensible to other water
management scenarios.

6 CONCLUSION
In this paper, we investigated the hourly water consumption pre-
diction problem using data collected from multiple buildings in a
university campus. We designed SWaP, a Smart Water Prediction
system to accurately predict future hourlywater consumption based
on historical data. To enable SWaP make good predictions, we de-
signed discriminative probabilistic graphical and deep learning
models, in particular sparse GCRF and LSTM based deep models
that successfully capture dependencies in the water consumption
data. Our experimental evaluation shows that SWaP achieves su-
perior prediction performance for all buildings, when compared to
linear regression and ARIMA baselines in terms of RMSE and MAE.
Additionally, we observed that a GCRF-based model provides better
performance than an LSTM based deep learning model. Therefore,
we recommend adopting the computationally efficient and inter-
pretable GCRF-based SWaP, which makes our model practically
attractive.
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